

ADVANCED TOPICS
IN SCIENCE AND TECHNOLOGY IN CHINA

ADVANCED TOPICS
IN SCIENCE AND TECHNOLOGY IN CHINA

Zhejiang University is one of the leading universities in China. In Advanced Topics
in Science and Technology in China, Zhejiang University Press and Springer jointly
publish monographs by Chinese scholars and professors, as well as invited authors
and editors from abroad who are outstanding experts and scholars in their fields. This
series will be of interest to researchers, lecturers, and graduate students alike.

Advanced Topics in Science and Technology in China aims to present the latest and
most cutting-edge theories, techniques, and methodologies in various research areas in
China. It covers all disciplines in the fields of natural science and technology,
including but not limited to, computer science, materials science, the life sciences,
engineering, environmental sciences, mathematics, and physics.

Zheng Qin
Jiankuan Xing
Xiang Zheng

Software Architecture
With 161 figures

V ZHEJIANG UNIVERSITY PRESS .~-3 Springer

A U T H O R S :

Prof. Zheng Qin,
School of Software,
Tsinghua University,
100084, Beijing, China
E-mail: qingzh@ mail.tsinghua.edu.cn

Xiang Zheng
School of Software,
Tsinghua University,
100084, Beijing, China
E-mail: xiangmyself@ gmail.com

Jiankuan Xing
School of Software,
Tsinghua University,
100084, Beijing, China
E-mail: xjk05@ mails.tsinghua.edu.cn

I S B N 9 7 8 - 7 - 3 0 8 - 0 5 4 5 3 - 9 Z h e j i a n g U n i v e r s i t y P r e s s , H a n g z h o u

I S B N 9 7 8 - 3 - 5 4 0 - 7 4 3 4 2 - 2 S p r i n g e r B e r l i n H e i d e l b e r g N e w Y o r k

e - I S B N 9 7 8 - 3 - 5 4 0 - 7 4 3 4 3 - 9 S p r i n g e r B e r l i n H e i d e l b e r g N e w Y o r k

Series ISSN 1995-6819 Advanced topics in science and technology in China

Series e - ISSN 1995-6827 Advanced topics in science and technology in China

Library of Congress Control Number: 2007937689
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned,
specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on
microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version,
and permission for use nxtst always be obtained from Spring~r-Verlag Violations are liable to prosecution under
the German Copyright Law.

�9 2008 Zhejiang University Press, Hangzhou and Sprin~'r-Verlag GmbH Berlin Heidelberg
Co-published by Zhejiang University Press, Hangzhou and Springer-Verlag GmbH Berlin Heidelberg

Springer is a part of Springer Science-q-Business Media
springer.com

The use of g~eral descriptive names, registered names, trademarks, etc. in this publication does not imply, even in
the absence of a specific statement, that such names are exempt from the relevant protective laws and re~a~iom
and therefore free for ~neral use.

Cover design: Joe Piliero, Springer Science + Business Media LLC, New York
Printed on acid-free paper

Preface

Building software nowadays is far more difficult than it can be done several decades

ago. At that time, software engineers focused on how to.manipulate the computer to

work and then solve problems correctly. The organization of data and

implementation of algorithm were the crucial process of software designing then.

However, more and more tasks in low level, such as memory management and

network communication, have been automatized or at least can be reused with little

effort and cost. Programmers and designers, with the help of high level programming

languages and wieldy development tools, can pay more attention to problems, rather

than bury themselves into the machine code manuals. However, the side effect of

these utilities is that more complicated ' problems are given according to the

requirements from military, enterprise and so on, in which the complexity grows

rapidly day by day. We believe that software architecture is a key to deal with it.

Many people become aware of the existence of software architecture just

recently. Nevertheless, it in fact has a long history, which may surprise you. Before

the invention of C++or even C, some computer scientists had begun to notice the

concept of software structure and its influence to software development. In the

1990s, software architecture started its journey of bloom, when several communities,

workshops and conferences were hold with a great amount of published articles,

books and tools. Today, software architect, the job of taking software designing,

analysis and dealing with different concerns and requirements from different

stakeholders, is considered as the center of development team.

But there is an ironical problem that most existing architects in fact do not take

any study or training in this field, some Of whom even do not realize that software

architecture is a kind of realm requiring academic effort, just as artificial intelligence

or data mining, The reason is that software architecture has no widely-accepted

definitions and standards of basic theories and practical methods, which leads to

that there are almost no universal course about this subject. Meanwhile, the rapid

growth and division of software architecture result in too many branches and sub-

fields, most of which still keep non-dominant and unified. These changes aggregate

VI Software Architecture

the trouble in learning even a subset of software architecture area. In this book, we

will provide an overview among the classic theories and some latest progresses of

software architecture and try to touch the software architecture's essence.

This book is a collaboration of three authors: Zheng Qin, Jiankuan Xing and

Xiang Zheng. More particularly, Professor Qin is the primary author who decides

the contents and issues what you can see in this book. And Jiankuan Xing organizes

the work of writing, and facilitates the cooperation with authors and other

contributers.

Targets

This book aims to give an introduction to the theory foundations, various sub-fields,

current research status and practical methods of software architecture. In this book,

readers can acquire the basic knowledge of software architecture, including why

software architecture is necessary, how we can describe a sys tem's architecture by

formal language, what architecture styles are popular for practice use and how we

can apply software architecture into the development of systems. Study cases, data,

illustrations and other materials which are released in the recent years will be used

to show the latest development of software architecture. This book can be used as

the learning material for touching software architecture.

How to Read This Book

We target to give readers an inside-out understanding of software architecture,

therefore this book is divided into two parts (not shown explicitly in content):

�9 Basic Theories: Chapter 1--Chapter 5

�9 Advance Topics: Chapter 6--Chapter 9

In detail, we give the overview descriptions for each chapter as fo l lows:
Chapter 1: Introduction. The theme of this chapter is the basic introduction

to software architecture, where readers will see why we need it, how it emerged and

what its def'mitions look like. We hope to give readers a clear vision on it,

considering a great many misunderstanding and arguments' presence. In addition,

with the development of research, concerns and usage of software architecture have

become different, which we will mention at the last section of this chapter.

Chapter 2: Architectural Styles and Patterns. Initially, the research on

software architecture emphasized the categorization of software in architectural

level. Some systems share the common structure and properties are classified into

one set in which the same vocabulary and similar models for representing these

systems can be used. Each vocabulary and models specified for a category is called

"architectural style". What ' s more, we abstract and represent some representative

structure and reuse them with style. Each structure is called an "architectural

pattern". Architecture styles and patterns are very precise utilities for constructing

Preface

complex systems. In Chapter 2, we provide descriptions, study cases and

comparison of them.
Chapter 3: Application and Analysis of Architectural Styles. After

characterizing several popular styles, we continue to offer a few study cases, each
of which combines more than one architectural style. Academically, this is called

"heterogeneous style constructing". As a matter of fact, applied software always

uses multiple styles simultaneously, no matter how simple they are. The goal of

this chapter is to tie the abstract styles to practice use.
Chapter 4: Software Architecture Description. How to describe software

architecture is the centric subject of architecture realm, because it is the foundation

to represent software' s design, perform effective communications among

stakeholders and measure sys tems ' behaviors according to requirements. In this
chapter, we pay attention to architectural formal description, which stands on the

mathematic basis. However, for UML, the language widely used as architecture

representation in practice, you can find excessive materials about it.
Chapter 5: Design Strategies in Architecture Level. This chapter gives you

a chance to touch the concept of architectural design with formal foundation. In
contrast to practical software development processes, such as RUP (Rational
Unified Process), formal architectural design strategies stress the relationship and

calculus of function space and structure space, both of which abstract the
development process performed in the real world. To get through with this chapter,
a fair capability of set theory and automata theory is required.

Chapter 6: Software Architecture IDE. Although software architecture is

useful for software development, using it with pure handwork incurs too much
overhead, and then time and cost, to the development process, which may obliterate
its benefits. That ' s the key why software architecture was not popularly accepted

in the 1990s. Now, we have the handy assist, software architecture IDE. The

purpose of IDE is to enable an organization to manage its software architecture and
other related actions and processes in a way that meets business needs by providing

a foundational utility upon which design, communication, framework code generation
and validation can be carried out automatically.

Chapter 7: Evaluating Software Architecture. After the initial architectural

design is finished, any stakeholder would finger out whether this design is good or
not, whether it will contribute to a successful development and then output the

satisfying production or doom to crush resulting from the design defects. That ~ s the
evaluation's task. In this chapter, currently widely-used evaluation methods are
discussed and compared. However, evaluation methods still lack the formal
foundation, and more focus on the experience and capability of participators.

Therefore, the description here will bring you the practical architectural methods
and technologies, based on which evaluation is performed.

Chapter 8: Flexible Software Architecture. Flexible software architecture

means the structure of a system which can metamorphose during runtime according

Software Architecture

to users' instructions, executing environment's changes or other requirements and

the related actions and processes. Tha t ' s crucial for systems' needs of self-healing
and self-adaptation abilities. The systems with these needs before normally mix the

structure metamorphosis code and application code, which insults more trouble in

maintaining and improving procedures. What ' s more, failing to divide this confusion

causes the system as conceived and the system as built to diverge over time. In this

chapter, we give an introduction to what flexible software in architecture level looks

like and what the principles and organization patterns of constructing it are.
Chapter 9: A Vision on Software Architecture. This is a chapter far away

from theories, methods and technologies, in which the applications of software
architecture in current software industry and in other fields, such as medicine,

electronic engineering and military are presented in general. After that, we will

provide several future research directions of software architecture at the end of this
book.

Considering the relative independence of each chapter, readers can choose several
chapters they are interested in. But we recommend Chapter 1 should be read

carefully since it can help you understand other chapters easier and better. In

addition, you can find more detail and deeper description about some topics through
the reference materials we give.

W h o Should Read This Book

The graduates and undergraduates whose majors are elated to software design and
development will benefit much from this book. Also, other people who are

interested in software architecture would be guided to this field by reading this

book. Then, experienced software designers and project leaders who want to adopt

architecture as the centric concerns and utility of their software development
process are our target readers, too. But they may suffer pain for a moment when
converting their original mind to the new world, from which they will at last benefit.

We assume our readers should have simple experience as follows. (Each capability
may only be involved in several chapters rather than the whole book)

�9 Programming using C++, Java or C#

�9 Software design (even a simple project would be fine)
�9 Software project management

Acknowledgements

It is a great pleasure to acknowledge the profound and orighaal work of Software
Architecture Group of Tsinghua Univ., especially Jiankuan Xing (Chapters 1, 5, 7,

8) and Xiang Zheng (Chapters 3, 4). Their insights, collaboration and diligence have

been a constant source which gestates the publication of this book.

For the current years I have been considering the problems of software

Preface IX

architecture. During the book ' s writing, we have profited greatly by collaboration
with many people, including Kaimo Hu, who prepares lots of materials for Chapters

2 and 9. Meanwhile, he often inspired us with wide knowledge and ideas; and Juan

Wang who buried herself into various software architecture IDEs and taught us how
to use them in a great detail, which contributed much for Chapter 6. She is also
participating the XArch project focusing on ADL parsing and model generating, And
many thanks to Hui Cao, a nice reader who has inspected most manuscript and
offered valuable criticisms and comments.

Beijing Zheng Qin
June 2007

Contents

Introduction to Software A r c h i t e c t u r e . 1
1.1 A Br ie f H i s t o r y o f Sof tware Deve lopment . 2

1.1.1 The Evo lu t ion o f Programming L a n g u a g e - - A b s t r a c t Level 2

1 .1 .2 The Evo lu t ion o f Sof tware D e v e l o p m e n t - - C o n c e r n s 4

1.1.3 The Origin and G r o w t h o f Sof tware Archi tec ture . 6

1.2 In t roduc t i on to Sof tware Arch i tec ture . 9

1.2.1 Basic Terminologies . - . 9

1.2.2 Unde r s t and ing IEEE 1471- -2000 . 12

1.2.3 ~ Views Used in Sof tware Arch i tec tu re . 15

1.2.4 W h y We Need Sof tware Arch i tec ture . 25

1.2.5 Where Is Sof tware Arch i tec ture in Sof tware Life Cyc le 29

1.3 Summary . 31

References . 32

Architectural Styles and Patterns . 34

2.1 Fundamenta l s o f Archi tec tura l Styles and Pat terns . 34

2.2 Pipes Fi l ters . 38

2.2.1 Sty le Desc r ip t i on . 38

2.2.2 S tudy Case . 39

2.3 Objec t -o r i en ted . 42

2.3.1 S ty le Desc r ip t i on . 42

2.3.2 S tudy Case �9 . �9 . 43

2.4 Even t -d r iven . 51

2.4.1 S ty le Desc r ip t i on . 51

2.4.2 S tudy Case . 55

2.5 Hierarchical L a y e r . 62

2.5.1 Sty le Desc r i p t i on . 62

2.5.2 S tudy Case . 64

2.6 Da ta Sharing . 70

2.6.1 S ty le Desc r ip t i on . 70

2.6.2 S tudy Case . 72

XlI Software Architecture

2.7 Virtual Machine . 76

2.7.1 Style Descript ion . 76

2.7.2 Study Case . 77

2.8 Feedback Loop . 81

2.8.1 Style Descript ion . 81

2.8.2 Study Case . 82

2.9 Comparison among Styles . 83

2.10 Integration of Heterogeneous Styles . 85

2.11 Summary . 86

References . 87

Application and Analysis of Architectural Styles . 89

3.1 Introduction to SMCSP . 89

3.1.1 Program Background . 89

3.1.2 Technical Routes . 91

3.1.3 Function Design . 93

3.2 Sys tem Realization . 97

3.2.1 The Pattern Choice . 97

3.2.2 Interaction Mechanism . 101

3.2.3 Realization of Mobi le Collaboration . 104

3.2.4 Knowledge-based Design . 111

3.3 Summary . 115

References . 116

S o f t w a r e Architecture Description . 117

4.1 Formal Descript ion of Software Archi tecture . 117

4.1.1 Problems in Informal Descr ip t ion . 117

4.1.2 Why Are Formal Me thods Necessary . 120

4.2 Architectural Descr ip t ion Language . 123

4.2.1 Introduction to A D L . 123

4.2.2 Comparing among Typica l ADLs . 127

4.2.3 Describing Architectural Behaviors . 133

4.3 Study Case: W R I G H T Sys tem . 135

4.3.1 Descript ion of Component and Connector . 136

4.3.2 Descript ion of Configuration . 141

4.3.3 Descript ion of Style .- . 143

4.3.4 CSP- -Semant ic Basis of Formal Behavior Descr ip t ion 146

4.4 FEAL: An Infrastructure to Construct ADLs . 160

4.4.1

4.4.2

4.4.3

4.4.4

4.4.5

4.5

Design Purpose . 160

FEC . 161

FEAL Structure . 163

FEAL M a p p e r . 164

Examples of FEAL Appl ica t ion . 164

Sunmaary . 166

Contents XliI

References . 167

Design Strategies in Architecture Leve l . 169

5.1 F r o m Reuse to Arch i tec tu re Design . 170

5.2 Arch i tec tu ra l Design Space and Rules . 171

5.3 S A D P B A . 172

5.3.1 Ove rv i ew . 173

5.3.2 Split Design Process wi th Design Space �9 173

5.3.3 Trace M e c h a n i s m in S A D P B A . 176

5.3.4 Life C y c l e M o d e l o f Software Archi tec ture . 177

5.3.5 S A D P B A in Pract ice . �9 . 178

5.4 Study C a s e : M E E C S . 180

5.4.1 I n t r o d u c t i o n to M E E C S . 180

5.4.2 A p p l y i n g S A D P B A in M E E C S . 182

5.5 Summary . 189

References . 190

Software Architecture IDE . 191

6.1 What Can Sof tware Archi tec ture IDE Do . 191

6.1.1 A C o m p a r i s o n w i th Formal ized Descr ip t ion A p p r o a c h 191

6.1.2 I m p o r t a n t Roles Of Archi tec ture IDE . 192

6.2 P r o t o t y p e . 195

6.2.1 Use r In ter face L a y e r . 196

6.2.2 M o d e l L a y e r . 197

6.2.3 F o u n d a t i o n a l L a y e r . 199

6.2.4 I D E Design Tact ics . 200

6.3 ArchS tud io 4 S y s t e m . 201

6.3.1 I n t r o d u c t i o n 201

6.3.2 Ins ta l l ing ArchS tud io 4 . 204

6.3.3 ArchS tud io 4 Overv iew . 206

6.3.4 Us ing ArchS tud io 4 . 214

6.4 Summary . 218

References . 220

Evaluating Software Architecture . 221

7.1 What Is Sof tware Archi tec ture Evaluat ion . 222

7.1.1 Qua l i ty A t t r i b u t e . 222

7.1.2 W h y Is Eva lua t ion Necessary . 224

7.1.3 Scenar io-based Evaluat ion M e t h o d s . 225

7.2 S A A M ' . 228

7.2.1 Genera l S teps o f S A A M . 228

7.2.2 Scenario D e v e l o p m e n t . 230

7.2.3 Arch i t ec tu re Desc r ip t i on . 230

7.2.4 Scenario Class i f ica t ion and P r i o r i t ~ a t i o n . 231

XI!/ Software Architecture

7.2.5 Ind iv idua l Eva lua t ion o f Indirect Scenar ios . 232

7.2.6 A s s e s s m e n t o f Scenario In t e r ac t i on . 233

7.2.7 Crea t i on o f Overa l l Eva lua t ion �9 . 233

7.3 A T A M 234

7.3.1 In i t ia l A T A M . 235

7.3.2 A T A M I m p r o v e m e n t . 237

7.3.3 Gene ra l P roces s o f A T A M . 238

7.3.4 P r e s e n t a t i o n . �9 241

7.3.5 Inves t i ga t i on and A n a l y s i s . 242

7.3.6 T e s t i n g . 244

7.3.7 P r e s e n t the Resu l t s . 245

7.4 C o m p a r i s o n a m o n g Eva lua t ion M e t h o d s . 246

7.4.1 C o m p a r i s o n F r a m e w o r k . 246

7.4.2 O v e r v i e w and C o m p a r i s o n o f E v a l u a t i o n M e t h o d s 250

7.5 S u m m a r y . 269

Refe rences . 270

Flexible Software Architecture . 274

8.1 W h a t Is Flexibi l i ty for . 274

8.2 D y n a m i c So f tware A r c h i t e c t u r e . 276

8.2.1 ~ - A D L : A Behav io r P e r s p e c t i v e 278

8.2.2 M A R M O L : A Ref lec t ion P e r s p e c t i v e . 284

8.2.3 L I M E : A C o o r d i n a t i o n P e r s p e c t i v e . -- 291

8.3 F lex ib i l i ty : B e y o n d the D y n a m i s m . 299

8.3.1 C o n c e p t o f Flexible So f tware A r c h i t e c t u r e . 299

8.3.2 T r a d e - o f f o f F lexib i l i ty . 300

.8.4 S t u d y Cases . 303

8.4.1 R a i n b o w . 303

8.4.2 M A D A M . 305

8.5 S u m m a r y . 307

Refe rences . �9 . 308

A V i s i o n on Software Architecture . 313

9.1 S o f t w a r e A r c h i t e c t u r e in M o d e m S o f t w a r e I n d u s t r y 313

9.1.1 C a t e g o r i z i n g So f twa re . 313

9.1.2 S o f t w a r e P r o d u c t Line . 318

9.2 S o f t w a r e A r c h i t e c t u r e U s e d in O t h e r F ie lds . 325

9.2.1 T h e Ou t l ine o f S o f t w a r e A r c h i t e c t u r e A p p l i c a t i o n Prac t i ce 325

9.2.2 T h e D e v e l o p m e n t T rends o f D o m a i n - S p e c i f i c S o f t w a r e 325

9.3 S o f t w a r e A r c h i t e c t u r e ' s F u t u r e R e s e a r c h . 330

9.4 S u m m a r y . 331

Refe rences . 332

Index . . 333

Introduct ion to Sof tware Architecture

Compared to the traditional software several decades ago which were simple
machine instructions or the combination of data structures and algorithms, current
software are more complicated and harder to control and maintain. Normally,
software systems are constructed through the assembly of components, whatever
those which are developed according to new specifications or those which are stored
in the libraries. In this circumstance, a team is needed to face different facets of the
system. Some of them deal with the necessary functions to be implemented or
reused in components, while others have to focus on how the work from different
divisions can be coordinated and communicated correctly. Meanwhile, in this
process some qualities of software must be guaranteed in order to approach the

S u c c e s s .

Software architecture is a rising subject of software engineering to help people
solve problems mentioned above. With it, designers or project managers have the
chance to oversee the status of software in a high level. In addition, software
architecture can be reused, resulting in the saving of huge cost and the reduction of
risks within the development processes and the activities after them, including
designing modeling, implementation, test, evaluation, maintaining and evolution.

However, tracking software architecture is difficult, because it always hides
itself behind what you can touch. Visualizing it requires a deep grasp of global
information of systems as well as excellent skills and methods. People from
different organizations or enterprises use different strategies to handle it, but most
of them have something in common. Abstract and sunmmry of these experiences
have become the foundation of software architecture science today.

In this chapter, we start from the history of software development, trying to
uncover the origin o f software architecture. Then we discuss the definitions and
meanings of architecture and other related activities. At last, we focus on what

benefits we will gain from it.

2 Software Architecture

1.1 A Brief History of Software Development

Revolutions in software development paradigm are not singular since the word
"software" was approximately born in the 1940s when the initial stored-program
computers emerged. Each shift, along with development methodologies, patterns and
tools, occurred to meet new environment and requirements. We believe that software
architecture is the next revolution. Many people have begun to follow this trend,
while, however, many others do not care about it, just as several years ago the
people who were reluctant to change their habits and use new development
technologies. Upon history level, we can get more clear sight of how software
architecture gradually becomes crucial for current software industry and why we
should change our manner of work to follow it.

1 . 1 . 1 The Evolution of Programming LanguagemAbstract Level

Abstract is the process that simplifies the real systems, activities or other entities
by ignoring or factoring out those trivial details without missing their essential
running mechanisms. To construct a solution with a computer, we abstract it and
implement it with programming language, in which the target model of abstract
greatly affects what programmers see that problem. The progress of programming
languages so far regularly increases their abstract level, transforming the emphases
on fi'om machine manipulating to problem solving.

In the 1950s, stored-program computers became popular and thereby
monopolized programmers' work manner at that time. Programmers used machine
instructions which can be executed directly by their computers and data with naive
categories such as byte, word, double word to express their logic. The layout of
instructions and data in memory had to be controlled by hand, that is, programmers
must keep in mind where the beginning and end positions of each constant and
variable exactly are. When the program needed update, programmers spent a lot of
time to check and modify every reference for data or code position that needs a
movement to keep program's consistency.

Soon, some people were aware of that these functions could be automated and
reused. Therefore, symbolic substitution and subroutine technology were created.
The great thing about these was that they liberated you from those trivial but
important works for the machine. However, commonly useful patterns, such as
conditional control structure, loop structure, evaluation of numeric computation
expressions, still had to be decomposed to simple control and computation
instructions that machine was able to carry out, which drew programmers' much
attention to the computation' s realization rather than the problem itself. This
improved the high-level programming. In the middle of the 1960s, FORTRAN from
IBM became the dominant programming language in scientific computation for its
convenience and high-efficiency.

1 Introduction to Software Architecture 3

In the latter part of 1960s, Ole-Johan Dahl and Kristen Nygaard created Simula,
a superset programming language of Algol, introducing the object-oriented paradigm.
The data type in FORTRAN serves to construct a map between FORTRAN types
to machine primitive data types. On the contrary, object-oriented paradigm
considers data t y p e as the abstraction of entities from real problems. Although
FORTRAN and C also have the utility such as "structure" and "union", they are
just the accumulation of data in that data type and operations specific to this type
are separated, and object-oriented rules, including encapsulation, implementation
hiddenness, access control and polymorphism are not touched. With the growth of
C++, a widely accepted object-oriented language, the programming world was
thoroughly changed.

The prime goal of C++or other contemporary object-oriented languages was to
put class as the basic reuse unit. However, the design and realization themselves of
these languages doomed to fail. On the one hand, absence of class meta data ruins
the promise of the update capability of a class~ s imp l ~ t a t i o n ; on the other hand,
disregard of the separation between the c o - - c a t i o n contracts anx)ng classes and classes ~
il'nplerm~ntation limits their capability of reuse. We can see that majority of reuse perfomaed
in C++ stand on source code level, while reuse in binary level may introduce more
problems than its benefits. You can fmd more details about this subject in (Joyner,
1996). When people f'md that software can be assembled by several independent
parts and thus can reduce the cost and time in building larger system, it is clear that
finding a proper reuse unit or establishing principles for this kind of unit is crucial.
(Ning, 1996) gave the first complete picture of component-based software
development model.

Component further raises the design level by increasing the concept size of
building block in software. The great thing about this is that it permits designers to
construct a system by using interindependent components, under the pl~emise of
that strict communication contracts are defined and followed. Object-oriented
paradigm is a good basis for component development model, but not each
component must be implemented by objects. After the middle of the 1990s, COM
and CORBA became popular because they extended C++or other languages to meet
component model~ s requirements and principles. Java and Net platform support
development and deployment in component level since their birth, with the help of
explicit utility of interface and meta information. What ' s more, the design model
created by UML can be easily converted to the source code in these two platforms.
UML combines concepts, advice and experience of countless designers, software
engineers, methodologists and domain experts to provide a suit of fundamental
notations, with which people care only components and the relationships, constraints
anaong them In other words, UML achieves the peak of abstract level so far.

We believe software architecture will bring next shift in software development
paradigm. But just as the relation between high-level programming languages and
UML, software architecture will not exterminate old methods and tools, but to
complement them to deal with large-scale, rapid-changing software intensive

4 Software Architecture

systems.

1 . 1 . 2 The Evolution of Software DevelopmentmConcerns

Along with the evolution of programming language, the focus of software
development also keeps changing. It is a commonly held belief among software
industry that getting victory needs competitive time-to-market while guaranteeing
products ' qualities to meet customers' requirements. Most of concerns pay much
attention to uncover and annihilate the bottlenecks in the development processes,
which depends on the enhancement of development utilities and toolkits.

In the age when machine code or assembly language dominated, the process of
designing was to express problem solution with primitive instructions and data.
Without the help of automation, programmers needed to track codes according to
their physical memory layout. If anybody did a poor job in organizing their codes,
he ran the risk of making everything a mess and letting update almost impossible in
which every reference of codes and data needing modified had to be changed purely
by hand. A good design could suppress a resulted tangly program finally because it
tried to clear the programming logic, although in a low level. Some tactics and
methods created by designers became the sprout of architectural idea improved later
on .

The next shift in concern was how to organize codes and data to avoid the
difficulty in reading, tracking, debugging and maintenance, which is now called
structuring. Unstructured program can be considered a whole block of continuous
code list, allowing the execution point to jump everywhere you want. Assembly
language is the typical example of constructing that kind of program. Nevertheless,
unlimited use of jump control statement will introduce server consequences. You can
find a famous criticism of GOTO statement from "Go To Statement Considered
Harmful" (Dijkstra, 1968a). To get structured program, the entire program is split
into smaller procedures whose executions depend on invoking among each other. By
using structured Organization strategies, software designers began to adopt the top-
down paradigm, that is, to decompose the large-scale software system into smaller
modules and perform detailed design respectively. The relationship among these
procedures is simply invocation. One procedure calls a series of sub procedures,
each of which repeats this process until the atomic procedures are reached. The top
level procedures can be considered as the construct parts of the whole system. The
design at that time was commonly a control flow diagram indicating that how a task
was performed step by step, and guiding how the program was executed in a
sequence.

However, structured paradigm does not mirror the real world very well and
thereby easily bring traps and pitfalls. Designers still need convert the problem
model to structured model and decompose it into modules, which is not thus natural.
Continuingly, code reuse will not be carried out easily because to reuse a procedure,
one must take a series of related data structure, which alway s not be imp lemented in

1 Introduction to Software Architecture 5

a single artifact! Therefore, the data-centric organization became a new attracting
trend within which action belongs to entity, rather than the vice versa just as what
we can see in the structured paradigm. More and more designers preferred to
package data type and its proprietary operations in order to provide the basic
construction and reuse unit. Object-oriented (OO) languages support this paradigm
explicitly and extend it greatly with derivation and polymorphism capabilities. Since
the middle of 1980s, modeling entities and their relationships in the problems have
turned to the new design methodology. Software designers can directly use
vocabulary in the problem space by thinking of their system's structures.

However, unfortunately, OO paradigm is not panacea. For example, pure OO
cannot meet needs that concepts cross with each other. For example, the instance of
class "Customer" and that of "Transaction" in a business system may couple
tightly, resulting in that the modification of one class forces modification of another.
If more new classes have to cross existed ones, taking class "Log" for example,
boring update w6rk that is commonly considered disappeared comes back. Recent
Aspect-Oriented Programming (AOP) tries to remedy this problem. In AOP,
designers divided entities into two categories: independent ones (such as
"Customer") and crossing ones (Such as "Transaction" or "Log") . By just
indicating cross points and controlling the cross styles, AOP interpreter helps deal
with the cross work. In my opinion, AOP is a good complement of OO, but still
stands in the same level with it.

Upon a higher level, object-orientation itself cannot solve the problem of
complex interaction among objects. Unlike software decades ago, software systems
increase their complexity drastically according to their execution styles, which are
transforming from stand-alone to cooperation. Therefore, methods and technologies
of interaction and data exchange draw much attention. Some interaction paradigms,
including invocation, point-to-point message transmission, publish-subscribe, are
getting their popularity when they are used in all kinds of implemented
communication protocols. From the almost all large-scale systems we can see that
software behaviors can be split into two categories: computational behaviors, which
handle business computation and architectural behaviors, which focus on the
integration of system. Whether structured or OO paradigm does not support this
separation explicitly since their concerns. Although O0 gives people a great building
block in design time, it is reluctant to express the runtime structure clearly. (For
instance, the runtime structure of C++ programs is identical to that of C program
while Java and Net platform only store simple meta-information in execution.) In
addition, "interface" implemented by 0 0 is too naive in that it only regulates
methods' signatures but ignoring a rich amount of other items of contracts, such as
a method 's performance or its memory usage. Interface in the design world has a
more generic meaning to handle semantic-understanding and manipulation of a

1 Artifact means the physical entity where implementation or information is placed, such as an
executive file, a library or a database table.

6 Software Architecture

service which is referred by that interface. All in all, to get these interaction
mechanisms, we have to construct them by ourselves and we need something to

express them.
Another important concern in this level is how to evaluate the influence of

systems ' structure to their qualities. Functionality comes from the computational

modules we implement, while others, such as availability, usability, and testability,
are attached to s y s t e m ' s runtime structure. You can imagine that we create a
redundant copy of crucial data in order to achieve performance or we interweave the

encryption function with computational components to keep security. Simply
speaking, functionality is mostly decided by customers' requirements, while non-
functional qualities are the result of how a system is organized in its runtime.
Wha t ' s more, after getting a structure that has several benefits to current domain,
how can we record, adjust and reuse it? Domain-suitable architecture is crucial for
the survival of any software manufacturer because it is the basis to apply software
product line construction, which produces software by slightly modifying domain
architecture according to requirements and implementing mainly through assembly.
Essentially, it drastically reduces the cost and time-to-market.

When we place our concerns to points mentioned above, we find that a
foundation, for designing, recording, evaluating and reusing is extremely required.
And we believe that software architecture is the solution.

1 . 1 . 3 The Origin and Growth of Software Architecture

The well-defined software architecture began its life in the 1990s, as most people
believe. However, its origin can be traced back to the late of 1960s, when software
crisis dragged publ ic 's attention. At that time, the success of software started to
dominate the success of the whole system because, compared to hardware, system
designers had more freedom in selecting or organizing software structures. But the
process of software development differs greatly from that of other artifacts, such as
a building, a car or a machine in that it is hard to figure out several clear phases to
layout it. Meanwhile, simply increasing programmers cannot increase the
productivity, but rather incur the failure of a project very easily (Brooks, 1975).
Software development is more than just to assembly a bunch of parts. Rather,
behind the entire process stand extreme complex relationships, which are not yet
uncovered today. In the 1968, NATO software engineering conference was held in
Germany, starting software engineering as a well-accepted scientific discipline,

which aimed to solve the problemsn mentioned above.
The first record touching the concept of architecture used in software

development can be found in "The Structure of the ' T H E 2 ' Mu l t i p rogram m i ng

THE is an early multitasking, but not multi-user, operating system whose development was led
by Edsger Dijkstra. In fact, THE is the abbreviation of "Technische Hogeschool Eindhoven", the
then-name (in Dutch) of the Eindhoven University of Technology, the location of this system was

developed.

1 Introduction to Software Architecture 7

System" authored by Edsger Dijkstra, which was published in 1968 (Dijkstra,
1968b). He discussed about how to use layers in construing a large-scale system and
then led to a desig~ with more clear structures and better maintainability. A deeper
understanding of architecture was given by Brooks, who defined it as "the comp lete
and detailed specification of the user interface" in (Brooks, 1975). In addition, David
Pamas made great contribution in the architecture's fundamental. His insight
included information hiding and usage of interface (Pamas, 1972), structure
separation (Parnas, 1974) and the relationships between software structure and its
quality (Pamas, 1976), all of which have become the golden rules of architects and
programmers nowadays. You can find a more detailed outline ofParnas ~ work at the
end of the chapter of Software Architecture in Practice (Bass, 2003).

Since the 1990s, a series of papers, workshops and communities pushed
software architecture into popularity. More formalized models to explain
architecture were released, setting up the architecture~ s academic research. In 1991,
Winston W. Royce and his son Walker Royce used "software architecture" in the
title and as the main topic in their article (Royce, 1991). Two papers (Garlan, 1993)
and (Perry, 1992) were widely referred for their fundamental contribution to this
field. Later, (Shaw, 1996), an early book containing and organizing a suit of related
papers, became the most popular tutorial and premier of software architecture
research.

During the middle of the 1990s, two of the most notable results of architecture
research were how to model software system with architecture used in general and
in single practical use. For generality, we mean architectural styles and patterns,
which aim to guide a satisfying design under a certain context. In initial days,
architectural styles, including their modeling~ representation, categorization and
reuse, dominated the architecture research, thus resulting in a deeper understanding
of software desigrl' s essence as well as more efficient development processes. This
subject will be discussed in Chapter 2. For single practical usage, we mean
methodologies on architecture descriptions for a specific system. Especially,
Architecture Description Languages (ADL) plays a crucial role in this sub-area.
ADLs try to formalize document or even visualize a sys t em ' s various structures
and organizations from various aspects. Some of them provide calculus models to
help designers to figure out the problems such as deadlock detection, consistency,
compatibility check and so on. In some ADLs involved the process algebra, such as
Communicating Sequential Processes (CSP) and n-calculus, to support the
description of systems' behaviors and evolution. WRIGHT, ACME, Darwin, C2 are
the typical ADLs and luckily become members of survivors among hundreds, if not
thousands, of their relatives. More information about ADLs will be accessed in
Chapter 4.

From 1994 to 2000, the institutions in this field got more and more mature. Lots
of communities, workshops and conferences were held when architecture's
importance became gradually dazzling In 1995 International workshop on Software
Specification and Design provided a space for architectural researchers. And the

8 Software Architecture

First International Software Architecture Workshop was held at the same year,
marking the bloom of this field. Latter in 1998, the Working IEEE/IFIP Conference
on Software Architecture started its life and still continues until today. Moreover,
after 1995 more and more conferences and workshops about software engineering
and design created several sections specifically on software architecture. During this
period, contributions from industry and academia become richer, most of which
started a revolution of software development processes and methodologies, including
architecture evaluation methods (such as SAAM (Kazman, 1994)), multiple views
description (such as Rational 4+1 views (Kruchten, 1995)).

After 2000, software architecture finished converting its position from design
phase to the center of the whole development process. And product line
architecture (Bosch, 2000) has become the most powerful weapon for any software
enterprise's survival. Meanwhile, we get the first standard of software architecture
in IEEE 1471-2000, recording the most comprehensive insight about research and
practice of this field. In the middle of 2003, UML, an initial modeling language
designed for OO development, evolved to its second edition, enhancing the semantic
support for architectural vocabulary, followed by a series of automatic design tools,
including IBM Rational Software Architect. At the same time, ArchStudio, an open
source tool for architecture design drew publ ic 's attention, which is introduced in
Chapter 6.

Architecture really became popular, not only limit in its research and its usage,
but in the interest of people. The SEI series books, including Software in Practice
(Bass, 2003), Documenting Software Architecture: Views and Beyond (Clements,
2003a) and Evaluating SoI'tware Architectures (Clements, 2003b) became the ones of
the most popular books in their years. Courses and seminars are started in many
universities or colleges. And many guys now consider software architect as the most
attracting career in a software corporation.

But the path of software architecture is far from the end because more challenges
come and need to conquer. For example, we need strategies to evaluate architecture
automatically and then keep the consistency between architectural designs and
implementations. Also, we need to use architecture as the guidelines to perform
software tests. Is it possible to realize the software factory in which products are
simply assembled? Or even is it possible to automatically design according to users'
requirements? While exploring these areas, we in fact are touching the essence of
software as well as the principles of human's tMnking, which are extremely hard to
touch.

What ' s more, sof tware ' s shape keeps changing, from the programs designed
specially for mainframes to the ones for operating systems on PC, from standing
alone to distributing among several nodes in the networking, from inflexible to
dynamic. 30 years ago, it was very tough to handle the project such as a compiler, in
which may involve the work of tens of top programmers working for one or two
years. However, nowadays anybody can make use of Lex and Yacc to generate a
compiler within several weeks. We still have some kinds of software that are at

1 Introduction to Software Architecture 9

present considered as rather complex and difficult to develop. What will they be in
the next decade? Along with the change of software, software architecture will

follow it and evolve further more.

1 .2 In t roduc t ion to Sof tware Arch i tec ture

In this section, we will introduce software architecture more precisely.
Unfortunately, different experts tend to define architecture and its model in their
perspectives and scopes, which leads to a mess of fundamental theories. But later
we will see that IEEE 1471-2000 standard tries to cover all the theories with which
most definitions and models can coexist without severe conflicts. We do not want to
create a "brand-new" doctrine of software architecture. Instead, we hope to give
readers a better understanding of its meanings and values b y tidying up existed
theories. Also, detailed explanations will be followed to avoid possible
misunderstanding. All in all, we believe that an appropriate thinking in architecture
is far more important than catching the rigid definition from certain articles.

1 . 2 . 1 Basic Terminologies

Before touching architecture' s definition, we will firstly discuss some concepts used
in it, which are standing in a high abstract level, thus resulting in easily confused
comprehension. The first concept is model. In software development, model means
the simplified and closed abstraction of reality, especially the problem to be solved.
First, model is the simplification of reality, which means that model only expresses
part of reality' s mechanism or behaviors. Obviously, it is impossible to concern all
the aspects of a sys tem together because too much information interweaved together
will incur chaos. A well-defined model will focus on the elements which have
important influence and omit those which have little relationships with the specified
abstraction level. Second, model is a closed abstraction, which means that model has
independency and use the vocabulary and constraints prominently different from
their models. A good example is the car 's structure, where you can model a ca r ' s
motility system, electronical system or sculpture. Model can become the blueprint
of a project, with which en~neers can more easily find where the strong points are
and where the shortcomings stand. The reason why I pay much attention to model
is that in essence, software architecture is a model.

Modeling can be categorized as informal, semi-formal and completely formal.
When modeling a software system, you can choose which one is best suitable for
your need. The purpose of formal modeling is to enable the strict calculus and
formal check with mathematic theories, such as state machine, to provide a
foundation upon which automatic evaluation are made possible. However, the

completely formal modeling of a system will introduce a great amount of design
information, which may be even more than the final implementation. Therefore,

software architecture in academia uses the completely formal style while in

10 Software Architecture

industry, semi-formal or informal architecture is adopted. A notable academic case is
in (Garlan, 1993), where software architecture is defined as:

SA = {Components, Connectors, Constraints}

As we discussed in Section 1. 1. 2, software architecture concerns only
interactions among the units in a system. The units here are defined as
"components" , indicating any unit that performs predefined services and can
communicate with other components. Connectors defined the communication
protocols and strategies. And constraints define the rules which the system must
conform to. In this model, software architecture can be considered as the
decomposition of several related and constrained components. Unlike the class in
OO paradigm, which just gives the basic building blocks in design phase,
components reflect the status during runtime. Similarly, the relationship such as
inherence in OO is not connector, which represents runtime communication. Of
course, components and connectors are not necessarily implemented with OO.
Instead, all kinds of programming languages, including assembly language, can be
used. The point is that components and connectors are elements in architectural
level.

However, is that enough to describe a sys t em ' s architecture? Can only
components and connectors along with their constraints contain all the information
about sys tem' s interaction mechanism? The answer is of course no, because the
above model concentrates on runtime structure of a system only, ignoring the static
relationships among building blocks, which are also crucial to sys tem's constructing.
No matter which structure, runtime or static, servers for the targets of system
building, including users' functional requirements and the exp licit and imp licit needs
on non-functional qualities. Architectural information has to cover all of these, in
order to help designers' decision making by showing structures which are necessary
to designers. For static information, we can use class diagram to show classes'
interrelationships in OO development, or adopt Entity-Relation diagram in database
design. Or even, how the source code files are organized? How each executive
program is deployed to its corresponding physical nodes? All these concerns play
roles in the development process of various software projects. Regarding their
importance, we have to take them into the realm of software architecture.

Then let us see another definition from (Bosch, 2000):

The architecture of a software system is concerned with the top-level
decomposition of the system into its main components.

In this definition, software architecture is handled as the unique decomposition
structure of a system, which poles apart from the first definition, concerning only
and single static structure. In addition, the term component has a different meaning,
which can be thought of module, the basic unit for implementation. The distinct
perspectives are visualized as follows.

1 Introduction to Software Architecture 11

Split ~l WordCounter ~ Sorter -~l Output

Fig. 1.1 Component and connector SA model of WordCounter 3

Main

Split I WordCounter] Sorter , C

Strin ility

Output

Fig. 1.2 Decomposition SA model of WordCounter

Clearly, the former tells us how the p r o g r a m ' s components cooperate by
regulating the communication mechanisms while the latter one tells us how

programmers cooperate by dividing the whole work into relative independent pieces.
Later we can find that they are both views of software architecture, belonging to a

series of views used by architecture documentation.
Another definition of software architecture comes frorri (Gacek, 1995), where the

author gave the concept as below:

SA = {Components, Connections, Constraints,

Stakeholder Needs, Rationale}

In this definition, requirements of functionality and other qualities are taken into

account. In practical use, components and connections are the consequence of design
decision-making according to various stakeholders ~ needs. Here, stakeholder means
that anybody who has concerns or goals in a specific software sys t em project,

including project managers, programmers, marketing sellers, customers, end users,
etc. Any decision on architecture constructing needs to take a trade off among
numerous concerns, some of which may be entirely conflictive while some o f which
have intrinsic links. Rationale is the strategies where trade off exists. This definition

reflects the practical influence to runtime structure, in order to integrate the research
of software architecture in academia and practice in the real world.

O f course, there are far more architectural models than what we mentioned

above. However, they can be considered as the typical and representat ive examples

3 WordCounter reads a textual file and output "word-frequency" pair for each appeared word in
frequency order

12 Software Architecture

which are handy to help understanding of this field. In order to meet different
concerns, handle different problems in different contexts, or to attempt new
methods, a bunch of architectural models have been published during the recent
years. But they should not be the gap blocking our paces in learning software
architecture, as soon as the essential concerns are followed tightly that how to deal
with the troubles in system interaction, decision-making of design and
implementation, communication among stakeholders and architectural reuse.

1 . 2 . 2 Understanding IEEE 1 4 7 1 - - 2 0 0 0

In the September, 2000, the first standard about software architecture was released.
This recommended practice targeted to mend the status that no reliable consensus
on what software architecture precisely is, including its various elements, links
among these elements, organization principles, as well as when and where they can
be applied, in the circumstance that architecture and activities in architecture level
have been widely accepted and taken into research and industrial practice. We use
architecture more out of our habits and experiences, instead of unified standards and
consistent foundations, taking formidable risks in our usage. Maybe it seems a
childish mission to gather existed theories and integrate them to produce the final
result. However, the difficulty is how to make it clear that software architecture
captures the complicated features of systems by synchronizing numerous
architectural theories and practical experience. There is a similar example that with
approximate 5,000 years' effort, architecture of civil engineering still cannot get its
precise and unified definition.

There are four kernel principles provided in this document, generalized as
follows:

Every system has its own architecture, but they are not identical.

Just as a stone has its own weight, which, however, is just a property for that
stone, software architecture can be viewed abstractly as an aspect of the whole
system, containing much crucial information. Stakeholders can acquire the general
information related to their concerns from architecture, but it is impossible to get"
everything from it, especially those in small granularity and particular details,
which, for example, are expressed in the term of primitives of programming
languages. System can be designed, built and run, which means it is a concrete
product, while software architecture is the high-level abstraction attaching to the
existence of sy stem.

Software architecture and its description are different.

Just as what mentioned above, the existence of software architecture is decided only
by the existence of System. But its description is the artifact created in some phase
of software development, following the desire to represent sys tem' s constituent
elements and their communication methods. You may have the questions that when
a system stands in its design phase (which means it does not exist), where its
architecture is? In my perspective, the design architecture is an expectation to
which, in normal cases, sys tem's implementation conforms.

1 Introduction to Software Architecture 13

In this recommended practice, software architecture is deffmed as:

The fundamental orsmaization of a system emlxxtied in its cornponents 4 ,

their relationships to each other, and to the environment, and the

principles guiding its design and evolution.

While architectural description is expressed as"

A collection of products to document an architecture.

From these definitions, you can find that software architecture is always
invisible. But those you cannot see can help you, if and only if it is visualized, that

is, documented. You can use any documenting techniques, including the combinations
of several diagrams in UML, a segment of textual code in ADL or even the simple

box-line diagrams, with the premise that meaning of each notation has been taken
into agreement by people needing to see them.

Nevertheless, architectural description is not Obligatory. An example indicating

this is legacy system, which might be constructed far before the start of well-
awareness or research of software architecture. A sub field of this, called
Architectural Reconstructing, aims to extract information in architecture level from
those systems without elaborate architecture documents, facilitating their
maintenance and evolution. In addition, if a system is rather small or it is a

prototype to experiment some algorithms, architectural documents are likely to be
simplified, or even completely omitted. However, in these cases architectures still
exist, although they might be weak, ugly and easy-to-crash.

Software architecture, architectural description and development process are
separated, both in research and in application.

In general, software architecture is what a sys tem 's structures look like;
architectural description is how these structures are shown, with what notations,
formats and organizations; and development processes are a series of activities

which might use architectural description. There are no strict restrictions among
them, meaning that you can choose any documenting techniques in presenting
invisible structures and adopt any development process model in using those
architectural documents. IEEE 1471 only defines what software life cycle is, but not
assumes nor prescribes a specific life cycle model. Meanwhile, it defines the
concepts of view and view point, but does not make it clear that which views and
viewpoints are necessary in representing architecture.

But it is worthwhile to highlight that the suitability of architectural description
for a specific development process model. For example, UML is the best companion
with Ratinonal Unified Process (RUP), which calls for 4 + 1 views, fitting for
unleashing of UML~s diagrams ~ capability. For Model Driven Development
(MDD), however, a highly formalized architectural model must be built because it is

4 The "component" used here has a different meaning with what we defined exactly in the previous
section, which celn be considered as part of software in ~'neral ~ g .

14 Software Architecture

necessary for code-des'ign synchronization. In domain software development, the
documenting issues may be distinct by adding the support of domain specific
concepts and concerns, which is best suitable for its own development process.
Therefore, the generic relations among these three provide the foundation for
clearing up the job of architecture, but we should select congruent methods in
practice concerning our purposes and contexts.

Space should be leaven facilitating the customization of detailed architectural
models for researches and practices.

This recommended practice defmes several guide principles for applying software
architecture, indicating the range of its basic concepts and related activities, rather
than prescribing everything fixedly. Organizations or individual users, then, have the
chance to combine these fundamental rules to their own context and provide their
own architectural models. Most concepts are introduced as "what should they at
least contain", but not "what is that exactly". For instance, the identification of
stakeholders is defined as:

At a minimum, the stakeholders identified shall include the
following
a) Users of the system
b) Acquirers Of the system
c) Developers of the system
d) Maintainers of the system

While stakeholders are explained as:

At a minimum, the concerns identified should include the following:
The purpose or missions of the system
The appropriateness of the system for use in fulfilling its missions
The feasibility of constructing the system
The risks of system development and operation to users, acquirers,
and developers of the system

Maintainability, deployability, and evolvability of the system

In this way, expansion can be performed in meeting special situations or solving
different problems while misuse is avoided to a great extent.

In addition, concepts view and viewpoint are accessed to indicate how to express
an architecture from multiple perspectives. The purpose of a view is to enable
system understanding focusing on a few specific concerns. Viewpoint, in addition,
defines the vocabulary allowed to use in a view. "Decomposition Architecture" or
"Component-Connector Architecture" involved in some articles, in fact, is identical
to "Decomposition Viewpoint" or "Component-Connector Viewpoint ". Every
architecture description should be documented in single or multiple architectural
views.

Nevertheless, the appearance of an international standard cannot eliminate most
problems in software development, because it does not depict the detailed steps and

1 Introduction to Software Architecture 15

activities of development in architecture level. Only can it be considered as the meta
reference model, guiding us to figure out which models, guidelines and constraints of
architecture are suitable, through which we are able to create our own development
methodologies.

1 . 2 . 3 Views Used in Software Architecture

We discussed systems, architecture, models and views, as well as their
interrelationships, which build the basis of understanding of software architecture' s
shape. Architecture hides itself behind the implementation or the design blueprint of
a system, simplified by a number of models, which concerns their perspectives only.
Views, through predefmed viewpoints, visualize models and then facilitate
architecture description and c o - - c a t i o n s among stakeholders. They are ~aaeralized as
Figl.3.

I Architecture

t Yst~ I
," x x (' ~'1 .j

L r , , ,f ~
/ - - x I ~, J x x

,"t I ~:'--" . . I ",,

/ /l ", '\ ""
, ,, x x

" i / ", / \

Model I I ~. Model 2 J \~ Model 3 ~

.left3

l j .o j
Fig. 1.3 System, model and view

A rather tough problem about defining a view is how to define semantic of
notations clearly and get them public accepted. What Kruchten said in (Kruchten,
1995) gets this point:

We all have seen many books and articles in which a single diagram
attempts to capture the gist of a system architecture. But when you look
carefully at the diagram ~ s boxes and arrows, it becomes clear that the
author are struggling to represent more in one diagram than is practical.
Do the boxes represent running programs? Chunks of source code?
Physical computers? Or merely logical groupings of functionality? Do the
arrows represent compilation dependencies? Control flow? Data flow?
Usually the answer is that they represent a bit of everything.

16 Software Architecture

Similar to the definition of architecture application methodologies, there is also
no world-unified views to represent software architecture. Although UML attempts
to achieve this goal, architectural puritans do not acknowledge it as a language for
architecture, for its lacking of mathematical foundations. But we can find discip lines
in categorizing common views which are suitable for most system development.
Here we provide some useful view types as follows.

At last, we must declare that view is not necessarily a picture or something of
that sort, although it commonly is. The view what we define here is the visual or
readable representation of a model, including picture styles, formal textual
specification or something mixed by them.

Component & Connector View

In my perspective, Component & Connector View (C&C View) is the most
important view for software architecture. As a matter of fact, many researchers only
take components, connectors and their annexes (such as their properties, constraints,
etc.) as main elements in their architectural models, and thus C&C view becomes the
solo representation of them. The reason for this situation is that we can deduce
excepted quality attributes from information extracted from this view in the very
early phase of software development, which, in turn, decrease development risks.

Programming
Client 1

m

Programming
Client 2

!

/i Code Repository
Server

Code Repository

Fig. 1.4

Legend
J J Client Application

[]Server

~ Database

Databse Access

. Subscribe-Publish

An example of C&C view

Fig.l.4 is an example of C&C view indicating the structure of a source code
version control system. The elements of C&C view are instances of components and
connectors, whose types are defined in other places (such as decomposition view or
specific views for software building vocabulary). You can find that there may be
multiple instances of the identical type appearing in a view simultaneously. C&C
view abstracts the runtime scene of a system, including its main functional units,
communication methods, data flows, etc. Each element has runtime meaning rather
than building blocks. For instance, in Fig. 1.4, code repository server may be
implemented through several classes in 0 O, or functions with C.

Each element of C&C view should have clear and non-equivocal meanings, which
normally reflected by a notation specification or a legend. The worst thing of view

1 Introduction to Software Architecture 17

is drawing with notations following habits and hobbies, which will introduce severe
mess and misunderstanding, evil enough to counteract all the benefits brought by
C&C view. Unfortunately, we often see figures, drawn by boxes, lines, arrow lines,
etc. with various colors, in many articles, reports and even design specifications,
which are called by their authors as "architecture".

In C&C view, components are functional units which interact with outside
through a series of predefined interfaces (not identical to the interface used in
programming languages such as Java or C#), which are organized as ports. Through
this limited access method, components encapsulate themselves, and thus become
independent and replaceable. Connectors are far more complex than what they look
like in C&C view, where they abstract the communication protocols. Compared to
the simple and basic communication mechanisms, such as invocation, message
transmission or asynchronous communication, connectors always represent more
complicated interaction systems. The access channel between client and a database is
a case of that kind. Different from components, connector itself often does not have
code, whose realization needs help of each component involved into connection,
where connectors' initialization, reply, interaction control may be located. The
interactive points of connectors are named roles, defining exactly how users can
manipulate connectors. For example, the connector "pipe" has roles "reader" and
"writer", both of which have the privilege just as their names indicating. Only
compatible ports and roles can be linked together, which is guaranteed through
compatibility validation, as Fig. 1.5 shown. At last, we should make it clear that
connector may contain more than two endpoints.

Fig. 1.5 Connection of component and connector

Experienced architects use architectural tactics to handle necessary non-

functional requirements. Assuming we need high security, encrypted access channels
will be used; if high availability 5 is crucial, redundancy is employed. Several tactics
can be combined and construct architectural styles to meet common design
problems. Architectural styles define necessary vocabulary for describing sy stem' s
runtime structure, and provide the foundation upon which architectural patterns are
built, which solve specific problems under a certain context. Architectural tactics,
styles and patterns can be represented through C&C view and then enable
architectural evaluation, because they can reflect the influence that design makes to
system' s expected quality attributes.

C&C view and the runtime model it shows are so important that they are
believed as an alternative of software architecture. In Chapters 2 and 3, we focus on

5 System availability means the extent to which a system resists against exceptions or errors. For
instance, how long will the system take to recover from its database' crash?

18 Software Architecture

architectural styles and patterns; while in Chapter 4, we tend to discuss more
deep ly about architectural description emp hasizing on runtime model.

Decomposition View

Compared to C&C view which reflects dynamic information during runtime,
decomposition view, however, supplies more static information. In practice, you
may get two kinds of support from decomposition view, as follows.

The first feature is to define the vocabulary of system and construct its logic
model. Here, we decompose the whole system into several logic concepts in top-
down style. This process of divide and conquer can be carried out recursively,
gradually showing system detail more and more clear, until the pieces which enable
personal development, test and management are reached. Through this activity,
useful and reuse-possible concepts are picked out and extracted. Then concepts are
interconnected according to their relationships in the real world, including use,
generalization, association, aggregation, composite and so on (generalization is the
special case of use, while aggregation and composite are special cases of association).
More advanced relationship properties, including multiplicity and association
direction, are also used if necessary. In addition, we can define types of components
and connectors facilitating C&C view. Concepts and their relationships construct
the logic model of a system. Logic model is especially useful for domain software
development because building blocks based on the model reduce the work needed in
similar development time and time again, because we can reuse existing blocks
implementing those concepts and relationships, or purchase them from market.

For example, if a courses-register system is under design, we may define
concepts such as student, department, course, and schedule. More concepts will be
added if runtime is concerned, such as course repository. Examples of relationships
may be that "each department are composed by many students, but each student
has to attach to a single department", or "students are categorized as undergraduate,
graduate and PhD." During the decomposition process, concepts and behaviors are
divided. For example, student may be considered as the combination of ID, name,
age, department, address, email and phone number, in which ID may be then divided
into several sections regulated by a regular expression. The behavior of register can
be described as a number of steps, such as logging in, searching course information,
checking course availability, updating course information and logging out. For an
explicit example of decomposition view, you can see Fig.l.2.

When development is being performed, architects cluster several concepts, as
well as their relationships, into an implementation or test unit, called module, within
which elements should work together in common ways to provide cooperative
behaviors that are bigger than all of its parts. It is a ubiquitous confusion and
misunderstanding between component and module, since they have some link hazily.
But they do not stand in the same perspective. In fact, they contain different
meanings under different concerns. Component is the logic abstract of functional
unit of runtime, while module is the cluster benefiting design, implementation, test
and management. It is possible that a module contains exactly the code executed as a

1 Introduction to Software Architecture 19

single component, but this relationship is not of necessity.
Another feature of decomposition view is to divide developers' work, making

cooperation feasible. After decomposition, pieces or modules can be mapped to
organizations or teams of developers, which own responsibility to perform ~ t ,
detailed analysis, imp lenaent at ion and test. Meanwhile, the decomposition structure has
benefits to system~ s learning and understanding, because it avoids the possibility
that novices are trapped into a mess of detailed codes and navigates them in top-
down style gradually.

There are two bans in decomposition views. The first one is that no loop should
exist in decomposition view, considering the recursive decomposition process needs
an end point; the second one is that no decomposition piece or module should be
contained in more than one parent module, since confusion of responsibility may be
bred.

Allocation View

Aside from software 's logic structures, development teams finally have to face the
physical problems. No matter what the logic units are, e.g. modules, classes or
functions, they needs concrete carrier absolutely. For example, we must record our
program into source files, and these files need compilation, optimization, link and
final code generation. In this process, some libraries might participate. At last binary
executed files are finished, which, in turn, are deployed on one machine or several
machines if a distributed system is under construction. Allocation view provides us
the sight how software architecture are projected into their relationships with its
extemal environments, which mostly contain file structures and hardware. Through
this view, we have a chance to perform development management (e.g. source file
version control or configuration) and can track the performance and system~ s
bottleneck. Wha t ' s more, in dynamic distributed system, allocation view helps us
follow the location change of logic units.

Two kinds of allocation view should be paid much attention. The first one is
called implementation view, or artifact view, focusing on that which source file is
used to implement which logic unit, and what the relation among source files is. An
implementation view of a calculator is shown as Fig.l.6.

Any source files may contain part, one or multiple modules' implementation.
These files include executed code files, declaration files (C + + ' s header file, for
example), build configure files (Java ant script file, for example) and so on. Besides
them, configure files, resource files (such as icon, skin or bitmap files) or even data
files stored in the format of database table, might be crucial to current development.
All of these need organization, commonly in hierarchical styles with the help of
folder (or directory), to facilitate the management and configuration of the whole
project. Through this view, on the one hand, programmers and testers are easy to
understand what they are doing and what influence they are making to the system.
On the other hand, managers feel comfortable to configure, build and publish an
executive system by easily tracking the dependency among a bunch of files
explicitly, if version information is added to implementation view.

20 Software Architecture

BasicCalc.dll

Add
Substract
Multiply
Divide

- ~ e g - ~ a

I
AdvCalc dll

Log
Factorial
Triangle
Logic

1
Statistics.dll

Average
Variance
Sum
Mean

i

z \ /

/ L,brary /

I~ Use
. l> Contained in

Calc.exe

MainFrame
Load
Save

Init.ini

I
Config /

/

SkyBlue.skn

1
19eepRed

1

l ' /
~ J

x i z/z

I
Resource /

File ~ Folder

Calc.ico

Fig. 1.6 Implementation view

The second one is deployment view, leading to fill the chasm between software
and hardware. The software elements o f this kind of view include modules, objects if
OO is in use, components or execution processes. The hardware elements are called
in general "nodes", which may be a client workstation, a mainframe, a server, a
router or mobile device. They are expressed in various forms, from visual icons to
strictly defined notation in a formal language, and everything in between.

Fig. 1.7 Deployment view

1 Introduction to Software Architecture 21

Through analyzing information brought by nodes ' properties, such as CPU
features, memory capability, network' s bandwidth and so on, many of the problems
with current design in architectural level will be exposed. For example, we can
calculate and track which part of the whole system slow down the overall
performance due to the hardware reason, and then simplify the algorithm
implemented there. If too many overloaded modules are put into a single node,
which is beyond the capability of CPU or networking, a schedule component may
be necessary to allocate limit resource among these competitors, or they are simply
distributed into multiple nodes.

Another feature of deployment view enables tracking of component' s mobility
(Fuggetta, 1998), if dynamic distributed system is under concern. In this case, code
is thought of special data resource which can be transmitted and executed in
different locations. In order to build the model which is capable of scouting the
relation between mobile code and its referred data, abstract of hardware and mobile
software unit must be employed.

A common mistake is that people always take deployment view as the solo
representation of software architecture for the reason that it is so intuitionistic and
"comprehensive" (including software components or modules as well as hardware
nodes together) that they are an overall snapshot of a system. It is very often that
pictures of this kind exist in a client' s user guide document, a public conference or a
software production show. But as we mentioned in Section 1.2. 1, software
architecture does not mean a sys tem 's arbitrary overview; and it is impossible for
deployment view to reflect detailed information in any other perspectives.

Behavior View

All above views are organized in the term of the relationships among a collection of
view's structural elements. You can get a deep insight of what the system should
look like, what part of the system you are working for, or what a series of influence
you will make if you modify something. Some quality attributes can be evaluated
through these views, far before the start of sy s t em ' s realization. But to perform
more detailed analysis, we need know about the system elements' interaction detail
and their internal behaviors which are related to their interactions. For example,
when we connect two components through a predefined connector by joining
components' ports and connector's roles, if behavior information is available, it is
possible to check potential to anomalies, such as unexpected message that will incur
crush, or necessary signal is missing which leads to a deadlock. Sometimes, we need
specify the order of in teract ion 's rules and orders, the chaos of which might
destroy s y s t e m ' s usability, even if every component is well established. In
addition, if time-crucial system is in design phase, such as an attack control system
for military, behavior is the most important one of few cues to track and control the
process time of sys tem's certain function.

There are so many types of behavior views with various concerns and usage. We
generalize them with three categories:

22 Software Architecture

�9 Message-Centric Behavior
This style emphasizes the collaboration among a collection of elements under

exchange of messages, including invocation, signal transmission or asynchronous
communication. While the direction, order, arguments and other detailed information
of messages are both shown in view of this style, elements' internal activities are
omitted. Typical examples are UML sequence diagram and collaboration diagram,
both of them can be converted into each other with little loss of semantic detail.

In UML sequence 'diagram, time order is shown vertically while involved
elements horizontally. Message is considered as the stimuli that activate elements'
certain behaviors. In Fig. 1.8, a case of successful purchase from a vendor machine
which is capable of getting payment from bank account automatically, Mr.
Anderson invokes " B u y " message to start the purchase process, which then
communicates with his account. We can add time constraints to some steps, just as
{<2s} indicated. UML collaboration diagram does not only have similar power to
sequence diagram, but has its benefits in checking whether the architecture is valid to
run the behaviors necessary because the designed links among elements are exposed.

Anderson:Person

I
I Buy

ReturnProduct

:VendorMachine "Account

I
I ,...-,

Login

Logout

~

I
I
I
I
I !

Fig. 1.8 UML sequence diagram

�9 Overall Activity Behavior

]< {<2s}

]< {<2s}

~ ~ {<2s}

Behavior view of this style can tell us mainly that how a task can be processed,
through which we can make clear of every s t ep needed to implement. Overall
activity behavior means that it does not care which part of software is responsible

1 Introduction to Software Architecture 23

?
(Get file name)

(Openfile _)

(Close file)

1
(Report error_~

Fig. 1.9 Control flow chart

for which sub-missions and how these missions are completed. The purpose of it is
just to decompose the whole task into several pieces, each of which may become the
foundation of system decomposing that constructs decomposition view. The
representative examples include normal flow chart, SDL (Specification and
Description Language) flow chart and UML activity diagram.

Flow chart is a venerable visualization mechanism, reaching its flourish in the age
of structured program paradigm because notation can be easily converted to
functions or modules and control structure code, such as conditional expression and
loop. Flow chart has been expanded to track the control flow and the update of data

structure.
However, some of current software is constructed by the abstract data type

style, where functions are not the unique bricks. Therefore, nowadays, flow chart is
often used in description of crucial path of work flow. A popular alternative in
construction industry of flow chart is Gantt chart, which models what flow chart
models plus the period of each overall activity.

As a matter of fact, overall activity behavior view is based on simplified state
machine. However, the trigger event is always the complete of previous activity.
Each activity is a nonautomatic operation, within which a collection of detailed

behaviors are performed.
�9 Single Element Behavior
Single element behavior view owns the power to show the comprehensive suit of

a single element 's behaviors. State machine is a perfect abstract which considers
behaviors as the events that trigger the transmission among states. UML state

24 Software Architecture

diagram enhances the basic state machine by providing primitives of concurrency,
state nesting, history record and deferred event. The example of vendor machine is
adopted here:

bu Idle

[. I g"-~Paymentj---~ L~176] \

\]A / (Vt~datnit~ i d at i o n I 1 ~ ~ Lo~veo, ~ -]]
\ I ,~, (Lo in) (Account'l ,~,L t, J fl

. x ~ _ . ~ - - - - - ~ g ~ - - ~ C h e c k i n g j ~ . _ [- , ~ . ~ ~ . ~

i l~rodu ~ t ~r n [Valid r

I ~ Find ~ f Product'l ~, 1~ I Error Re ort 1
L " [Pr~ ~ J p Ej

Fig. 1.10 UML state diagram

We have seen the sequence diagram of this system before, which show the
interaction among user, vendor machine and bank account, but ignoring product
validation. Here, we can see the behavior of vendor machine more clearly. Everything
is set up to the idle state, if "start" event occurs. Validation and purchase are two
composite staies, each of which is consists of several sub-sstates. Entering a
composite state means current state jumps to the start state of it, then sequential
states are passed until sub end state is reached. Especially, validation is a concurrent
state, which represents multiple processes run simultaneously. Concurrency is
visualized by several regions separated by a dash line. The "buy" event triggers the
state transmission from idle to validation, where concurrent executions are activated,
that is, the validation on account (to see whether the customer gives the correct
account ID and its password) and product (to figure out whether there are enough
products that customers demand) begin to run. If something wrong during validation,
"invalid" is sent to result in error report. If everything is fine, the purchase process
is started, enabling the execution of its internal operation, represented by three sub-
states. Here, we assume that customer's account always afford his demand to avoid
the mess of handling that exception with another error report state which contains
logout sub-state. No matter whether the customer gets what he wants or confirms
the error information, idle state is reached, ready for next deal. At last, we can
shutdown this vendor machine when it is idle to terminate this program.

Although powerful in representing software elements' behaviors, behavior view
is not limited within programs' interaction only, but also includes human's or other
related sys tems ' stimulation to the current system and the resulted response. This
technology, publicly known as "use case", has got its popularity in capturing

1 Introduction to Software Architecture 25

user 's requirements and analyzing interaction between system and its outside
environment, to which the making of sys tem's test plan refers.

The key point of use case view is considering the system as an independent
entity, sealing everything realization detail. Just as a common talk, user can initialize
a command or message and expect the observable response from that system. An
example of use case view by UML is shown in Fig, l . l l .

<<uses>>

Customer

~ 5<uses>>

>~ in'tamer

Fig. 1.11 Use case view

1 . 2 . 4 Why We Need Software Architecture

A great many beginners of software architecture, especially the ones that take
several courses of programming or computer science related mathematics, feel rather
confused that whether it is really useful, even though they can repeat the definition
of it very accurately. It is the typical phenomenon of lacking experience and
suffering of the large-scale system development. Experienced designers, project
managers or members of evaluation will get the point of architecture' s importance
after understanding what it is and how it can be represented. But for be~.ners, we
generalize and give its powerful features explicitly as follows:

Representing system's initial outlines, allowing the analysis and evaluation of
system' s quality in the early phase of development

Software architecture reflects the earliest design decisions of the whole system,
which has the most crucial effect to sys tem's implementation and is almost
impossible to change. Every primary requirement, both explicit and implicit, should
own its corresponding resolution in it. In software architecture, system building
blocks, their behaviors as well as interaction methods among them are described
clearly. The purpose of them is to provide a chance to perform the check of
potential defects or problems with formal calculus or experienced disciplines, and
analysis of sy s t em ' s expected qualities. Meanwhile, if multiple architecture
candidates are given, which is a common case in the development of large-scale
system, evaluation will be carried out by collecting various stakeholders to select the
most suitable one or generate advice for modification.

2 6 Software Architecture

The reason why these check, analysis and evaluation are feasible is that software
architecture comes from the combination of experience tactics to meet certain needs.
For example, if you want high-security, the communication and data exchange should
be encrypted and components should limits their access point tightly; if you want it
to be reused, you must decrease the coupling among elements; if modifiability is
your target, you have to limit the affected range when change occurs.

Providing constraints to system's implementation

Decades ago, programmers and designers began to be aware of the disaster
consequence of coding without any limits. They try to figure out what should not
be done and what should be encouraged, considering targets of the whole system.
But experience was the mainstream tool then.

Today experience is still handy, but compared to the amount of members in a
team nowadays, it is not realistic to guarantee every developer not to do anything
that designers believe harmful, especially in some areas that designers do not
describe in detail (It is very common that designers will not do that). Therefore,
constraints are crucial and necessary to software development. Luckily, we can use
software architecture to convey this information, mainly in two facets.

On the one hand, software architecture decides the decomposition structures,
runtime structures and communication mechanisms, some of which can be used in
achieving certain non-functional requirements. Under this context, programmers only
have freedom in the private parts of their own missions. We will see in the below
that this freedom is not absolute. They cannot add a component they believe funny
or ignore the implementation of some interface they do not like or are lazy to take.
If the architecture is considered as questionable, then a reevaluation will be
performed, rather than tampered by programmers. In this case, the latter is almost
impossible to happen because strict review, discussion and evaluation have been
carried out during architecture's construction.

On the other hand, software architecture may contain explicit constraints about
multiplicity, memory usage or processing time. Noticeably, architecture patterns
provide great templates to fill a variety of constraints. Constraints are commonly
expressed through properties or annotation comments if it is difficult to describe.
Any implementation must conform to these constraints in order to contribute to
sys tem's expected quality. The precondition of this kind is, of course, constraints'
feasibility. This problem can be avoided through an architecture evaluation process
taken by the existent programmers or delegates of them as the stakeholders.

Contributing to the reuse and the realization of software product line

Reuse is the fundamental of industrial production, which mark the revolution of our
world. Manufacturing has shown us that the production efficiency is extremely
increased by the components with unified physical size or unified electrical
interface. Due to the standard, there is no need that workers build every product
from nothing. Each process of building becomes the assembly of components
completed before. What ' s more, the unification brings us convenience. Imagine that
how you can use mini electrical devices without the existence of standard-sized

1 Introduction to Software Architecture 27

batteries, or that how you will feel if you cannot find the second tire which can be
installed on your lovely car.

In software industry, we also need reusable parts just as in other areas. However,
before using components, we must identify components first. Architecture has this ability
to help us figure out which part of the system can use an existed component, and which
part can be possibly reused later, and then i n a p l ~ t e d as a component. For example, in
business information system, it is a good idea to divide the whole system into several
layers. Separated persistent storage layer allows the quick switch an~ng various database
systems, such as Oracle 10i, IBM DB2 or MySQL. After all, it is unsafe to bind the whole
enterprise into a single component provider, considering they may increase price, or stop
technique support for some reason.

The reuse in higher level is the reuse of architecture itself. If you are designer of
a company focusing on business information system, you will find it is very similar
in the design of the system for other companies, educational organizations or
governments. They seem to be the variation on a theme, resulting in the similar
architecture. We call this "reference architecture" for a specific domain. Owning the
reference architecture, cost and time for discussing on the design about basic
functions are saved, which, in turn, increases the competitive capability. The more
important point is the reference architecture is abstracted from a great amount of
practical application, collecting thousands of thousands of people~ s wisdom and
holding many perfect qualities. Is there any other more valuable guarantee than using
this in constructing a new system? The answer is obvious.

Reference architecture can be implemented into an adjustable framework. In fact,
lots of these have surrounded IT world. Take Web-based business information
system for instance, the dominant framework today are EJB (Enterprise Java Bean)
and Microsoft Net platform. Services about life management of objects, networking,
transactions and others crucial to distributed systems, have been constructed in a
flexible manner. Users will gain a complete system only through configuration and
writing codes specific to their own business.

With the reusable architecture and the reusable components, software product
line becomes feasible. The general idea of product line is to assembly software.

In software production line, part of developers is "assembler" , who is
responsible for searching and adjusting required reference architecture, as well as
assembling components into the final system according to architecture.

Facilitating the communication among stakeholders

Different perspectives from different kinds of stakeholders are obvious. No matter
which role they are, including managers, programmers, maintainers, customers and
users, they want their concerns to be reflected in sys tem's blueprint. Architecture
is just the media by which different voices will get their response.

Architecture is not the language for describing requirements. Some-body who
wants to do that may try the "planguage" created by Tom Gilb (Gilb, 2005) or
other more classic methods, such as use case or scenario. However, architecture gives
you the chance of finding the solution to those concerns, or taking trade off among

28 Software Architecture

Third Part
Component Brokers

- _o E _

Architecture Repositor~ ' Component Repository

Production Standard and Quality Guarantee

Fig. 1.12 Software production line

the conflict ones, for the reason that any concerns are affected, more or less, by
certain aspects of architecture. This means that architecture is the stand point upon
which discussion, trade off, or even debate are carried out. Without architecture, it is
nearly no other mechanism to convert the advice from stakeholders to the final
design.

What ' s more, some architecture description allows users to proof their opinions
by reasoning~ For example, WRIGHT, based on CSP, owns the ability to detect the
potential deadlock problems by analyzing the behavior description automatically,
which enables you to persuade others, rather than argue endlessly just according to
experience or instinct that may be thought of nonsense.

Deciding how to organize team members and allocate tasks

Generally speaking, the structure of system always becomes the reference to which
how a development team is divided and organized. In this way, each group focuses
on its own mission. The grouping, then, decides the style of management and work.
Group becomes the unit of scheduling, test plan, interaction and configuration. For
example, team leader may add CVS accounts for different groups with different
access permissions, regarding to security concerns; groups must finish the integrated
test for their production before any of the whole system scale tests is performed.
Architecture defines the interface through which system's primary elenaents intemcet. This
is just the mexzhanism that different groups should realize and conform to.

In addition, grouping further erects the future path of team members. After
experiencing several projects, a developer pays attention to a more specific area,
touching something so deeply that no other guys have ever done. For example, some
developers are very good at creating graphic user interface by profoundly
understanding users' habits, while some others do extremely well in configuring the
database due to their clear comprehension about how a database works. In this way,
developers with similar skills, such as programming, eventually become fellows
expertized at their own domains, together supporting the development team.

But the grouping according to software architecture will suffer from
architecture' s change. Any minor fluctuation will severely disturb developers'

1 Introduction to Software Architecture 29

focuses, hurt their initially zealous emotions. Manner of management and work may
be given up and reconstructed, incurring a waste of cost and time. In conclusion,

without considerable reason, the architectureresulted from cogitation and agreement
should never be changed.

1 . 2 . 5 Where Is Software Archi tecture in Software Life Cycle

Today, software appears rather distinct as what it did several decades ago, that is,

the simple combination of algorithm and data structure. It has a life, from the
emerging of an idea about "we should develop it" to sof tware ' s abandon, during
which include requirement acquirement, design, implementation, test, maintenance
and possible evolution, which means the next loop of processes mentioned above.

Architecture can be used among these processes, and if applied skillfully, the

positive effect is obvious. On the contrary, the feedback improves our experience
and insight about architecture's power.

Software Life Cycle

l
System

Maintenance

Requirements
Acquirement

Sys tell1
Design

d'\

Analysis
&

Evaluation

Implementation

j yTt:m
Fig. 1.13 Architecture centered software life cycle 6

How we use architecture in software life cycle is represented as architectural
activities. A common standpoint hold by architectural beginners and some experts is

taking architectural activities as part of architecture' s definition. But in this book
we distinct these two concepts since we insist that architectures are attached to
software system themselves, just as every stone has weight, while how to use it

6 This figure does not represent what the actual situation is exactly. For example, test commonly
starts before implementation's f'mish.

30 Software Architecture

depends on developers' awareness of architecture's importance and skill and
creativity of applying it. Common architecture activities include:

�9 Creating suitable architectural model
�9 Choosing architecture according to requirements
�9 Documenting architecture
�9 Discussing with architecture documents
* Performing architecture analysis and evaluation
�9 Implementing conforming to architecture
�9 Testing system with architecture guide
�9 Reconstructing architecture from legacy system
This book does not target to introduce practical architecture in very detail, so we

will not provide comprehensive explanation for the topic above. Nevertheless, this
list transmits a message that it is possible to create an architecture-centered
development process. In fact, some experimental processes of this kind have been
provided, such as ABC (architecture-based component composition) (Mei, 2001).
Maybe you insist that you have never touched or heard of architecture before, but
in fact you are using architectural activities like methods implicitly, or adopt
frameworks whose implementations hide reference architecture or the similar
thoughts.

Nevertheless, sometimes, we must omit some activities considering development
context or status. The key point is to compare the profit and the cost brought by
architectural activities, where profit contains economic benefits and software
quality. For example, the architectural description generated by certain ADL may be
much longer than its implementation, which is a routine critique by those pessimists
of architecture. Or, the evaluation may incur extreme increment of development cost
because it needs gathering of numerous stakeholders, possibly distributed at
different locations in the world, which, then, may. delay the time-to-market.
Managers must keep clear that architecture in practice is a double edged sword. You
cannot gain benefits by paying nothing.

But software is keeping growing in size and complexity, especially with regard
to its integration from several components. This trend increases the necessity of
putting architecture into your development process. The real question is the degree
to which you should depend on it. For example, it is wise to create an architectural
model by inspecting your system's special needs and features; it is a good idea to
limit the refinement level, avoiding your system description falling in a detailed trap;
it is also very nice to localize a formal description and analysis within several kernel
components and their configuration by following, for instance, the 80/20 principle.

In conclusion, software architecture can locate in almost any position in the
software life cycle, but you have to make the decision that where and how to apply
architectural activities by figuring out whether it is worthwhile. In this perspective,
software architecture seems more like a methodology or a philosophy guided by
leading principals, rather than a formula, which, given an input, always outputs a
clear result. This may be the essential reason why software architecture is so hard

1 Introduction to Software Architecture 31

to understand, and why its theory system is so hard to found.

1 . 3 Summary

A correct initial understanding helps to clear the rugged path of further learning. But
for any beginner to software architecture, trouble in how to depict the first figure of
it is inevitable. In this chapter, we start with the motivation and growing of
software architecture, trying to present clearly why it comes to our world and how

it can be used.
Different experts will define software architecture of their own. After all, it is

the tool to solve practical problems in various domains and contexts, thus various
architectural models or definitions have been released. We can find something in
common among them, and summarize several principals in identifying them. Precise

definition of software architecture may be important, but as far as I can see, it is
not so much necessary, just like the missing of precise definition of human does not
affect us to identify whether something can be categorized as human. The key point
is to grasp the essential principals and motivations which stand behind the
appearance, such as architectural model, ADL, or architectural activities.

This chapter gives a reference understanding of software architecture, under
which existed theories and models appear more harmony. We conclude them as
follows. But we encourage any creative idea that can improve our insight, which is
the engine with which software architecture keeps moving until today.

�9 Software architecture is the inherent property of software system, no matter

what it is.
�9 Software architecture is the abstract of software system, focusing on a

collection of related structures and communication mechanisms among

elements as well as between elements and their environment.
�9 Software architecture and its description are separated. Architecture

description has to be generated by some people participating in the
development, such as designers or employees concentrating on architecture

documenting. You may choose graphic notation or textual language, such as
ADL, in description, as soon as they are precisely def'med and accepted by
development team. Also you can choose a formal description, an informal
description or everything between them, considering your real development

situation.
�9 An architectural view is the simplification of a single perspective of software

architecture, which contains a collection of related elements, relative
independent to the ones in other perspectives. Some view has dominant
importance in the architecture analysis, for example, component & connector
view. View may not be a graphic representation, although it commonly is.

�9 Software architecture and architectural activities are separated. Before
applying any architectural activity, y o u ' d better to evaluate the benefits and

32 Software Architecture

cost brought by them. What 's more, you can model architecture in your own
way, if the innovation helps to solve the characteristic problems in your
development.

In this book, we concentrate more on the theories behind software architecture
and how these theories are integrated to the practice. In the next chapter, we turn
our attention to architectural styles and patterns.

References

(Bass, 2003) Bass, L., Clements, P. & Kazman, R. Software Architecture in
Practice, 2nd ed.: Addison-Wesley/Pearson. 2003.

(Bosch, 2000) Bosch, J. Design and Use of Software Architecture: Adopting and
Evolving a Product Line Approach: Addison-Wesley. 2000.

(Brooks, 1975) Brooks, F. P. The Mythical Man-Month: Essays on Software
En~neering: Addison-Wesley. 1975.

(Clements, 2002) Clements, P. & Northrop, L. Software Product Lines: Practices
and Patterns: Addison-Wesley. 2002.

(Clements, 2003a) Clements, P., Bachmann, F. & Bass, L. Documenting Software
Architectures: Views and Beyond Addison Wesley/Pearson. 2003a.

(Clements, 2003b) Clements, P., Kazman, R. & Klein, M. Evaluating Software
Architectures: Methods and Case Studies: Pearson Education. 2003b.

(Dijkstra, 1968a) Dijkstra, E. W. The Structure of the "THE" Multiprogramming
System. Communications of the ACM 1968a(18).

(Dijkstra, 1968b) Dijkstra, E. W. Goto Statement Considered Harmful.
Communications of the ACM 1968b(11): 147-148.

(Fuggetta, 1998) Fuggetta, A., Picco, G. P. & Vigna, G. Understanding Code
Mobility. IEEE Transactions on Software En~neering, 1998(24): 342-361.

(Gacek, 1995) Gacek, C., et al. On the Definition of Software System Architecture.
Proceeding of the 1st International Workshop on Architectures for Software
Systems, New York.1995:85-95.

(Garlan, 1993) Garlan, D. & Shaw, M. An Introduction to Software
ArchitectureAdvances in Software En~neering and Knowledge Ent~neering.
World Scientific. 1993.

(Gilb, 2005) Gilb, T. Competitive En~neering: A Handbook for Systems
Engineering, Requirements Engineering, and Software En~neering Using
Planguage, Butterworth-Heinemann 2005.

(IEEE, 1998) IEEE. IEEE Standard for a Software Quality Metrics Methodology.
1998.

(Joyner, 1996) Joyner, I. C++: A Critique of C++, 3rd ed.: http://burks.brighton.
ac.uk/burks/p cinfo/p rogdocs/cp p crit/. 1996.

(Kazman, 1994) Kazman, R., et al. Saam: A Method for Analyzing the Properties
of Software Architectures. Proceedings of 16th International Conference on

1 Introduction to Software Architecture 33

Software Engineering, Sorrento, Italy.1994:81-90.
(Kruchten, 2006) Kruchten, P., Obbink, H. & Stafford, J. The Past, Present, and

Future of Software Architecture. IEEE Software, 2006(23): 22-30.
(Kruchten, 1995) Kruchten, P. B. The 4+1 View Model of Architecture. Software,

IEEE, 1995(12): 42-50.
(Mei, 2001) Mei, H., Chang, J. & Yang, F. Software Component Composition

Based on Adl and Middleware. Science in China (F) 2001(44): 136-151.
(Ning, 1996) Ning, J. Q. A Component-Based Software Development Model.

Proceedings. The Twentieth Annual International Computer Software and
Applications Conference (COMPSAC '96) (Cat. No.96CB35986) 1996(389-
394).

(Parnas, 1972) Parnas, D. L. On the Criteria for Decomposing Systems into
Modules. Communications of the ACM 1972(15): 1053-1058.

(Parnas, 1974) Parnas, D. L. On a "Buzzword": Hierarchical Structure. Proceeding
of lFIP Congress 1974, Amsterdam, North Holland.1974:336-339.

(Parnas, 1976) Parnas, D. L. On the Design and Development of Program Families.
Software Engineering, IEEE Transactions on 1976(SE-2): 1-9.

(Perry, 1992) Perry, D. E. & Wolf, A. L. Foundations for the Study of Software
Architecture. SIGSOFT Software Engineering Notes 1992(17): 40-52.

(Royce, 1991) Royce, W. E. & Royce, W. Software Architecture: Integrating
Process and Technology. Quest 1991 (14): 2-15.

(Shaw, 1996) Shaw, M. & Garlan, D. Software Architecture: Perspectives on an
Emerging Discipline, Prentice Ha11.1996.

Architectural Styles and Patterns

2 . 1 Fundamentals of Architectural Styles and Patterns

One of the most important features of software architecture is the abstraction of
system construction patterns; these patterns are the experiences of system
designers. In the long process of developing some certain software, they have
explored some regular things, summarized, and got lots of general construction
pattems. In this chapter, we will bring forward some widely-used design patterns;
we hope to provide plentiful reference materials for readers' system analysis and

design.
It is common to use design pattems and develop methods based on patterns in

many engineering fields. A well-designed universal design pattern is often the sign of
a mature engineering fields techniques. The general technical nomenclature and rule
have already been written into the engineering techniques handbooks and
professional course materials.

At present, people's understanding about software architecture is not uniform.
In the early days of software architecture, Dwayne E. Perry and Alexander L.Wolf
defined software architecture as: the software system family defined by software
system's structure organization. Software architecture styles represent the
relationships between components and components through the restriction of
component application and the composition and design rule relative to components.
In nowadays, the consensuses of people about software architecture styles are: a
certain style or a class of styles are abstracted from the successful software
system's organization structure, and can be used in different software development
fields.

But before the beginning of this chapter, it is necessary to distinguish two
important concepts: architecture styles and architecture patterns, just as shown in
the title of this chapter. Many researchers think these two concepts refer to the
same thing, while others consider they are different. The debate is still continuing. In

2 Architectural Styles and Patterns 35

our opinion, before the clear classification of style and pattern, we should first
consider at what level we will describe the system. As described in many books, we
will consider they refer to things on different abstract levels. In the book "The
Timeless Way of Building" written by Christopher Alexander, the concept of
pattern language is built. The concept of software architecture is borrowed from the
architectonics field, so we can define: a pattern is a design solution in the relative
problems ~ context for a certain problem (Albin, 2003). A single problem can not be
solved lonely; they must be solved in the environment which is full with conflicts
and hindrances. Hence, a pattern is a solution for a certain problem to balance the
benefit and cost so that the optimal result is achieved. Generally speaking, pattern
is not only the objects that exists in the real world, but also tell us the rules that
when and how to create this certain object; pattern is not only process, but also
things; it is not only the description of live things, but also the description of the
process of building these things.

But we consider the architecture style as a solution to solve a certain class of
problems which have common quality attributes requirements. There is no
architecture style that is proper for all systems, because every system have
different quality attributes requirements. Some systems attach importance to the
security attributes, whiles others emphasize much on real-time attributes.
Architecture styles always benefit some attributes at the cost of losing some other
attributes. In the following parts, readers will find each of the architecture~ s
disadvantages and advantages, in fact, the disadvantages and advantages are just the
benefited and lost quality attributes. In this sense, we can consider style as the
framework of the solution, but not framework, comparing with the patterns which
are in fact a solution for the concrete problems. The choices of styles constraint the
scale of solution space, so that the complexity of f'mding proper patterns ~ process
is reduced.

Pattern is a concrete solution just as described above, but at different abstract
level, they have different content. For instance, at the architecture level, for the
pipes and filter style, they have many forms: if the filtei's are strictly constrained to
have only one input and one output, the system is called pipelines, it is composed
by linear sequences of filters and pipes which lay between these filters; if the max
amount of data is limited on every pipes, these pipes are called bounded pipes, the
whole system is another type in the pipes and filters style; if the data types that
will be input into the pipes are def'med, we say that the pipes is data strongly
typed, which forms another type in the pipes and filters style; if the data streams
are not incremental, we call the system is batch sequential. If it is permitted, we
would like to call each of the above types architecture patterns in the pipes and
filters style. Reader should not think there are some standard criterions which can
classify different patterns. In fact, the patterns are abstracted from different
perspectives. For example, if a system is build in the style of pipes and filters, the
filters are constrained to have only one input and output, and the max data amount
is specified, we call the system is not only a pipelines, but also a system that has

36 Software Architecture

bounded pipes. In a word, different patterns can be composed.
Behind the concept of architecture style and patterns, we think there are two

other concepts that have similar relationship with architecture. We will describe the
two concepts in the following parts.

The first one is the control principle. It describes how to activate each
component to process information, and how to transfer information between
components. For example, in the dataflow systems, components read data from their
input port, and send it to their output port, controls are sealed in the low layer
transfer mechanisms. In the call and return systems, application structure's controls
are explicit, there exists a main instance and thread that call all the other
components, and the inner control in the independent components is similar to
dataflow system; the components and objects can communicate with other
components and objects through messages. The virtual machine control is also
different with the other styles. So in this sense, we think that control principle is
the main characteristic of each style. In another word, we can say the control
principle is the criterion to classify software architecture style.

Control principle describes how toactivate a component, or describes how the
logic is processed. In the book "The Art of Software Architecture: Design Methods
and Techniques", the author think control principle can be classified into two
layers: technique layer and design layer. In technique layer, the method call and
method execution's match in run-time layer are described. This technique can also
describe how middleware activate the remote objects through remote methods or
message sequences. Readers must know, in the programming language C, method call
and method execution are bind together; but in the language such as Smalltalk,
method call and method execution do not match. The client object can send a
message to another object, and the corresponding methods may be executed in
another control thread. That is to say, method call in the client may not lead to
method execution in the same control thread. In design layer, the control principle in
run-time layer can be simulated. In nowadays, the object-oriented programming
languages all have these abilities, such as C# and Java. The concepts of event and
message are frequently used in object-oriented analysis and object-oriented design,
even object-oriented systems ~ implementation. In this layer, the communication
pattern can be classified into synchronous, asynchronous and authorized. The
synchronous communication means that the client component activate a server
component, then wait for the response. Generally speaking, when an operation is
called, the calling program is always waiting until the response values are returned.
The asynchronous communication between components means when the client
component call a server's component, it need not wait for the response. It can be
doing other tasks while waiting for response. At last, the client retrieves the
response. If the response is not ready, client can continue to waiting for the
response or do other things while checking the validity of response in certain
intervals. The asynchronous communication is a strong pattern to build high
performance distributed application, but the cost is the more complicated

2 Architectural Styles and Patterns 37

applications that have poor error-tolerance. The third is authorized pattern, the
client components call the server components and pass an address to which
response will be sent. The authorized pattern is similar to asynchronous
communication, the sole difference is the called component need not wait for the
response, in another word, the response can be sent to other client component and
the event can be processed in another thread.

In a word, the activate model, which also can be called control principle, can
compare the difference between different architecture style. Exact comprehension
about the requirement of sub-system' s activate model is of helpful to choose, or to
describe better, design a proper architecture style, or design better combination of
architecture style. As we will describe in the end of this chapter, in most of
application systems, multiple architecture styles are combined to achieve certain
quality attributes, this is the concept of heterogeneous architecture style integration.

The second concept is quality attribute. Generally speaking, every architecture
style has its history and certain context, this means that each architecture style is
proposed in a certain environment, and can solve certain key problems or satisfy
certain requirements, but at the cost of debasing another set of quality attributes.
For example, the pipes filters style has good reusability, but suffer from the data
representation's modification, and sacrifice sys tem's maintenance. Object-oriented
system is proper for data representation' s modification and sys tem's maintenance,
because they encapsulate data 's inner representation detail. But, because of
designer's objective preference, and they may design classes in their Own habits.
The lib based systems are good for system's adaptability and performance, but for
the algorithm and data representation's modification, they do not have high
reusability and maintenance.

Software designers are clever, to build good system that balance the quality
attributes, and they combine styles in different fields together. For instance, they
may combine the lib method and object-oriented methods.

Using architecture style can benefit much: first, we can improve design reuse.
When solving new design problems, developers can improve develop efficiency
through using proper style. Second, the extraction about style brings general
communication form for developers. The vocabulary about design element facilitates
developers ~ understanding and communications. For instance, if we use vocabulary
such as client/server, pips-filter styles in system design, design and develop
personnel can easily know the application range and design restraints. Third, using
style can improve codes ' reuse. When used in different systems, the basic
framework code style needs not to be modified; it can be shared in different
systems.

In software architecture, the continual summarization and abstraction for
software style leads to the research of style classification. For example, Mary Shaw
and Clements classified architecture from two aspects: data and control. After that,
Mary and Garlan classified style as dataflow system, call-return system,
independent component, virtual machine, central repository. In these styles,

38 Software Architecture

dataflow system includes sequence-batch process and pipes-filter styles; call-return
system includes object-oriented system, layered system; dependent component
includes communication process and event driven system. Virtual machine includes
interpreter and rule based system. The repository style includes database, hyper-
text and blackboard, etc., but these classifications do not list all the styles. New
styles will continually appear as the development of software techniques. For
instance, the rising agent-oriented research does not appear in these classifications.
In some fields of the software architecture, which has special style, such as
network, web services, peer-to-peer structure, we must research them specially.

In this chapter, we will list the main software styles. For each style, we first
describe its basic characteristics, and then give some instances to illustrate the style.
After introducing these styles, we will give some general conclusion about each
style. Then we describe a virtual system that uses many architecture style
meanwhile, so as to introduce the integration of heterogeneous styles.

2.2 Pipes Filters

2 .2 .1 Style Description

In Pipes-Filters style, each processing step has a set of input and output. A
processing step reads a stream of data from the input set, and generates a stream of
data to the output set. That is to say, components in the system compute one data
set to generate another data set. In the Pipes-Filters style, function modelers which
process data are called filters; connectors between function modelers can be treat as
the channels between input dataflow and output dataflow, so it can be called pipes.

One of the features of pipes-filters s t y l e is the independence of filters, this
means, filters implement their function independently, they need not communicate
with each other. In addition, each filter need not know the existence of input pipes
and output pipes which connect to it, the only thing they need do is to restrict the
input data, and guarantee there are proper data in the output pipes, but they do not
know the implementation details of other filters existed in the system. At the same
time, the final output of the whole pipes-filters has no relation to the operation
sequence of each filter. One of the pipes-filters ' graph is as follows:

If we give some restriction to the Pipes-Filters style, we can get a variety of
Pipes-Filters sub-Style. For example, if we restrict the topology structure of Pipes-
Filters in a linear sequence, we call it Pipelines; if we restrict the data amount stored
in the filters, we call it Bounded Pipes; if each filter processes all the input data as
a single object, this architecture become sequence batch process system. These are
also described in Section 2.1.

Pipes-Filters style has the following advantages:
First, Pipes-Filters style decomposes the whole system into a set of filters that

connected by pipes. The independent of filters reduces the couple between

2 Architectural Styles and Patterns 39

- ~ Processor

Processor t~ ~ Processor I
Processor ._1 Processor

I "Vl

Fig. 2 .1 Pipes-filters style

components, hence, it support the function modular level reuse. Existed filters in the
system can be easily applied to new systems which are to be designed. Second,the
system that composed by pipes and filters can be easily maintained and extended.
The maintenance is mainly incarnated a system' s evolution. The filter only needs to
consider components' input, output and inner implementation, and not needs to
consider the filter' s maintenance and modification. If we want to replace a certain
filter, we only need to design a filter that has the same input, output with the
original one. The extension mainly incarnate on the system functions' expansion.
For instance, if we want to add a new function to the original system, add new data
output, we can finish it by adding new output port to the original filter. Third, in
the Pipes-Filter style, the independence of filter component provides convenience
for system's performance analysis, such as data throughout, deadlock analysis and
computing accuracy, etc. Fourth, it supports concurrency computing, Systems based
on Pipes-Filters style may have many parallel filters; these filters can run
concurrently, so that the whole performance of the system improved.

Meanwhile, the Pipes-Filters style has some disadvantage:
Filters may have some restrictions to the input and output data, so this style is

not proper for interactive systems. In fact, when the pipes-filters style is brought
forward, the applications does not have high interactive requirement. In the early
days of computer design, this type of style met the requirement of processing
multiple tasks. For some application design that needs sharing much data, it is not
proper to use this type of style. The exchanging of data between filters needs large
data access space, and the transmission of data will occupy much system running
time.

2 . 2 . 2 Study Case

In this part, we will give a typical example about digital communication system, and
introduce in detail how to organize each component using Pipes-Filters style. From
this, we can obviously know that software architecture is production produced
when system analysis, creation and management technologies have got many
research results. Software architecture does not only limit to computer software or
other concrete subjects, it has strong general utility.

The goal of communication is transferring information. Messages have a variety
of forms, such as symbols, text, voice, music, graph, image, etc., according to the
difference of messages. We can classify the communication operation into telegraph,
telephone, fax, data transferring and visible telephone, etc. In fact, the basic peer to
peer communication is always transferring data form one point to another point. So,

40 Software Architecture

this type of communication can be summarized by the model showed in Fig,2.2.

I Noise Source I

linformation source H de,ivery devicel I ~I Receipt device H receiver I
channel

Fig. 2.2 The glancing model of digital communication system

Fig.2.2 has four filters and pipes that connect them. The function of information
source is to transform all possible information into original electric signals; the
delivery device changes the original signals in some way so that the original signal
can be transferred in the channels. The channels not only can be treated as pipes
(because its goal is not to realize some function, but the transferring of signal), but
also can be treated as filters (because after each channel, the signals may have some
change). At the receive port, the function of receive device is opposite to the
delivery device, and it recoveries the received signals to the original signals.

According to the types of signals in the channel, we can classify the
communication system into two types: simulative communication system and digital
communication system. In this book, we only take digital communication system as
example. In digital communications, there are some typical problems.

First, when the digital signals are transferred, the error generated by channel
noise can be controlled by error control coding, So we must add an encoder to the
delivery port, and add an according decoder to the receipt port. Second, when
secrecy needed, we should encrypt the base band signal, so as to avoid the
information damage or communication destroy. At this time, we should decipher in
the receipt port. Third, because in the digital communication system, the digital
signal units are transferred one by one, the receipt part must receive it in the same
time. Otherwise, the dis accordance of receiving time may cause confusion; this may
leads to receiving ineffective data. In addition, to represent message content, the
base band signals are organized by message content, so the rule of delivery port and
receipt p o r t ' s organization must be the same. Otherwise, the original signals can not
be recovered even if they are correct. In the digital communication systems, we must
have synchronism control components.

As described in this part, the peer to peer digital communication s y s t e m ' s
Pipes-Filters model can be represented as Fig,2.3.

In Fig,2.3, we do not explicitly represent the synchronism control components,
the main reason is that the position of synchronism control components are not
fixed. They are flexible, and are different in different concrete systems. Of course,
the real digital communications do not necessarily include all the filters showed in
Fig,2.3, and they also can include filters that are not showed in Fig,2.3. For instance,
whether to use the modulation and demodulation, encryption and deciphering,
encode and decode components, depends on the concrete design methods and
requirement, and it is this that shows the mightiness of Pipes-Filters. For example,

2 Architectural Styles and Patterns 41

Fig. 2.3 The detail model of digital communication system

in a digital base band transfer system, the modulation and demodulation are not

included; in addition, if we add an ADC to the information source, add a D A C to the
receiver, then the digital communication sys tem can process analog signals, this is

also called the analog signals' digital process system.
In the systems that use the pipes filters architecture, the filters need not to be

atomic. A filter can be divided into many sub-filters, and these sub-filters can be
connected together using connectors. We will introduce a simple example. In this

example, a string can be splited into an array of words, and then the words can be
combined in certain rule to form new strings. At last, we can sort the new negated

strings alphabetically, and output them. The architecture model is shown in Fig,2.4.

Fig. 2.4 A simple PipeFilter example

Generally speaking, the whole sys tem can be divided into two filters: The

42 Software Architecture

Splitter filter and MergeAndSort filter. If we input a string into the filter, it will
sp lit the string into a set of words, and output them. Then the M ergeAndSort filter
can accept the output data from Splitter filter, and generate the sorted strings. In the
designers and analysts' perspective, they do not care how this MergeAndSort filter
works; they only care about the interfaces in the filter, and they consider the filter
as an atomic filter. But in fact, if we are in charge of this MergeAndSort subsystem
or must implement the filter, we will certainly decompose it into two sub-filters:
Merge and Sort. The Merge sub-filter can merge the words in a certain rule to
generate new strings, and the Sort sub-filter can sort the new generated strings in
alphabetical order. So we do not consider the M ergeAndSort filter as an atomic
filter. In another word, we can say a filter can be either atomic or combined. I think
even a filter can be any type of system as long as the whole system conforms to the
Pipes Filter s tyle 's constraints.

2.3 Object-oriented

2 .3 .1 Style Description

The object-oriented style integrates the data abstraction, abstraction data type and
class as an incorporate object, and makes the principle of modularization,
information hiding, abstraction, reuse implement in the object-oriented style. The
ultimate goal of object-oriented pattern design is to seek the natural description and
solutions about problems in real world, that is, to seek the consistence of seek
problem space and software system space structure. It treats all the resources, such
as data, modular, as objects, and it abstracts the problems and their elements
through class; it encapsulate its own data structure and function implementation, to
realize the information capsulation and data abstraction.

A set of objects that have the same attributes and operations can form an object
class. The programs that are defined to describe object operations are called
methods, the objects contact with each other through messages between objects; this
is the sole way to implement the relationships between objects. The class
inheritance makes the subclass be capable of inheriting all the characteristics and
abilities of super class. This hierarchy relation can describe the application problems
in real worlds easily, it conforms to the reuse goal of software, so it became the
main characteristic of object-oriented system.

To construct systems based on object-oriented style, we should first find
objects in the problem, so that we can construct proper class to represent different
objects, we then solve the problems through message transferring between objects
and the inheritance mechanisms of classes.

The object-oriented systems doe not only encapsulate information and segregate
sys tem 's modification, but also includes methods. These methods encourage us to
treat the concept of real world as object, and to model them directly, because users

2 Architectural Styles and Patterns 43

can design classes and packages as they wish. This is similar to the entity-relation
modeling in database systems; in fact, the E-R model is another instance in
computer field that can simulate human's thought. In dataflow systems, their main
view is process but not data. In the object-oriented or data abstraction systems,
data view is emphasized, at the same time, the detailed process view is also
permitted, and this view is represented by the certain data operation' s form and
hiberarchy structure between classes, methods overload is also permitted.

With the rapid development of software engineering, the design styles and design
patterns are continually increasing, and the new architecture permits us to compose
a .variety of sys temsusing user-defined objects.

Languages such as Java are object-oriented; programming in such a language is
called object-oriented programming (OOP), it allows designers to implement the
object-oriented design as a working system. Languages such as C, on the other hand,
are procedural programming languages, and programs in this ' type of languages tend
to be action-oriented.

We will see that, when software is packaged as classes, these classes can be
reused in future software systems. Groups of related classes are often packaged as
reusable components. Just as real-estate brokers tell their clients that the three most
important factors affecting the price of real estate are "location, location and
location", many people in software community believe that the three most
important factors affect the future of software development are "reuse, reuse and
reuse", this is just one of the most important characteristics of object-oriented

architecture style.
Indeed, with object technology, we can build much of the software we will need

by combining "standardized, interchangeable parts" called classes. With the rapid
development of object-oriented technology, many related technologies appear and
develop quickly, such as object-oriented analysis and design (OOAD). OOAD is the
generic term for the ideas behind the process we employ to analyze a problem and
develop an approach to solve it.

Pseudo code can suffice small problems, but as problems and the groups of
people solving these problems increase in size, methods of OOAD become more
involved. Ideally, a group should agree on a strictly defined process for solving the
problem and on a uniform way of communicating the results of that process to one
another. Although many different OOAD processes exist, a single graphical language
for communicating the results of any OOAD process has become widely used. This
language is known as the Unified Modeling Language (UML). UML was developed
in the mid-1990s under the initial direction of three software methodologists: Grady
Booch, James Rumbaugh and Ivar Jachbson. We will not describe the detail of
OOAD and UML language; readers can refer to other special books.

2 . 3 . 2 Study Case

In this section, we will describe a system instance based on object-oriented style;
this model 's core idea is component thought, which is the hot research problem in

44 Software Architecture

nowadays. We will understand the open distributed system from the component
perspective, and then analysis the model.

With the rapid development of computer software and hardware, computers'
application and popularization have got good results, and the import of Internet
injects new fresh things to the computer system application. At present, a standard
computer application system includes: computer operation system (including
application software system), database management system and network
environment (including network hardware device and protocol, network services).
This kind of system is called Open Distributed System, we often call it ODS for
short. ODS is the basic form of computer application system in nowadays and
future, and is the production of digit aliz at ion, information, networking,

In the following parts, we will introduce CBA method, which is the short form
of component based analysis. A component is a function unit that encapsulates its
design and implementation, it provides interfaces for outer classes, and the
interconnection of multiple components' interfaces can form an integrated system.
The advantage of component is: we can provide standard technology service
framework, implement the position transparence of language and component, and the
good reusability based on attributes and events. Just because the good characteristics
of component in the modeling process, we take the CBA method as example.

CBA method has three basic modeling concepts: collaboration, type and
refinement. On this basis, we can generate a variety of design and style, from the
simple component model, to design patterns and architecture description, to the
solution of final system' s reliability problems. (1) Collaboration. According to
different roles that the components take on, the collaboration defines a set of action
between components. They can abstract the detail of multiple components'
communication and the session models between components. (2) Type. Type
defines its function it takes on in the system through the description of
components' outer action. Type is not the implementation of according component,
but just the outer characteristics that any correct implementation must incarnate. (3)
Refinement. Refinement incarnates two different description relations for the same
thing. Abstraction description is the basis, the realization description can be treat as
the concrete form of abstraction description. These two descriptions are mainly
against the different detail degree for the system.

Based on these three concepts, we can use the component thought to uniform
the whole system, and to define component, relations between components and
refmement of abstract description. The CBA based system is similar to the
composite patterns in design patterns; it has the characteristic of recurrence, it can
satisfy the requirement of increment development, it has good quality attributes
such as maintenance and extensibility.

In this part, we will introduce the components, connectors and configuration' s
model in ODS system. It is obviously that only having architecture is not sufficient
to solve real problems; we must have more concrete method to refine the framework,
to incarnate the three concepts of modeling, To achieve this goal, we introduce

2 Architectural Styles and Patterns 45

component, connector and configuration, as showed in Fig,2.4. We will introduce
them in detail in the following part.

(1) Component. Component is the basic element to describe Open Distributed
System; we can describe a component from the following six aspects: The first one
is interface. Interface is the interactive point between components and outer
environment; it defines services that a component provides (such as message,
operation and attributes). The second one is type. Type is a reusable function
modular; a component type can be instantiate any times in the architecture. The
third one is semantics. Semantics is the advanced modeling of components' activity.
Using this model, we can do system analysis, fix the constraint condition, and make
sure the architecture' s consistence of transition from one abstraction description to
another abstraction description. The fourth one is constraint. Constraint condition is
the attributes of the system or one part of the system, and violating constraint
condition may leads to system crash. Constraints fix the constraint condition,
boundary, and the dependency relationships between components. The fifth one is
evolution. In the run time of ODS, components will evolve all the time. The
evolution of components can be simply defined as the changes of components'
attributes, such as interface, activity and implementation. We can use the component
type figure or characteristic refinement to incarnate the dynamic style of ODS. The
sixth one is nonfunctional property. This characteristic is mainly in charge of
security, privacy, high performance and mobility.

understandable

/intlrfs]Clitypevi~ma~ ntic, f---interface N~ /L----compositional

(~ ? ~Yo~~fun_c_!!onal ~ - ~ refinement

k ~ ~) / ~ c~ / ~ -- ' - heter~

~ " ~ o n n e c t o r ~ o mpone nt'k___ ev a, na t ion/ / ~---- extensible

~ X---evaluation

Fig. 2.5 ODS system framework

(2) Connector. Connectors are used to analysis the interactive model between
components, and def'me the interactive rule. Connectors need not to be a editable
unit in the ODS, it may appears as shared variable, table entrance's index finger,
buffer area, dynamic data structure, etc. We can describe connectors from the
following five aspects: The first one is interface. These interfaces are between
connectors and components. Connector does not take part in the network
computing, its interface provides component 's service to outer environment.
Connectors provides the connector between components and interaction, it can

46 Software Architecture

provide necessary information for software architecture's configuration. The second
one is type. Connectors' type is the encapsulation for components' commtmication,
coordination and mediation decision. Open Distributed System's inner interaction
need complicated protocols to support, and type just provides description of these
protocols. The third one is semantics. Semantics define the rule of communication
protocol, it can be used to analysis the interaction between components, to maintain
the consistence between different abstraction levels, to make sure the constraint
conditions of components' communication are satisfied. The fourth one is
constraint condition. Constraint conditions are used to make sure connectors'
communication protocols are correct, it can also build the dependency between
components, and make sure the boundary is used. The fifth one is evolution. Similar
to components' evolution, connectors' evolution is also defined as the modification
of attributes, such as interface, semantics and constraint condition. Components
communicate with each other through complicated, extensible and dynamic
protocols; both single component and architecture configuration are continually
evolving. To adapt this evaluate characteristic, we can modify or refine connector.

(3) Configuration. Configuration is also called topology, it is the architecture
graph composed by components and connectors. The configuration can be used to
judge four problems: Are the components suitable? Are the connectors matched? Are
the communications of connectors normal? Do the semantics of component
connection satisfy the design requirements? On the base of components and
connector, the description of configuration can be used to describe s y s t e m ' s
concurrency, distribution, security, to implement the reliability of Open Distributed
System.

In this paragraph, we will introduce the description method of component. Using
UML and ADL (Architecture Description Languages), we can describe the
components and their relationships in the Open Distributed System. Using the auto
generation tools of GUI architecture structure, we can accomplish these function:

(1) Generation of component model;
(2) Construction of connectors, including protocols, attributes and imp l ~ t a t i o n ;
(3) Abstraction and encapsulation of architecture;
(4) Validation of type;
(5) Provision of design guide;
(6) Support of multiple view to show different views for different users;
(7) Generation of imp lerm'ntation, including how to reflect components to classes with

object-oriented technologies;
(8) Dynamic reflection of modification to system implementation dynamically.

The system modeling based on components provides hard base for the
analysis of Open Distributed System, a variety of application fields can
easily build themselves on this base.

To guarantee the efficient and reliable communication between components, and
to provide real-time, synchronous and concurrency communication ability, we must
design some connector models that have adaptive steady characteristics. This mainly

2 Architectural Styles and Patterns 47

includes the following two aspects:
(1) The communication protocol stack in connectors
The communication protocol stack is composed by a set of communication

protocols which have different functions, and each protocol is in charge of a part
work of components' communication. In this system, we mainly use the following
basic protocols:

The first is component naming and addressing protocol. The architecture models
of ODS system are built on the base of component, and formed by components'
composition. Components are their basic elements and the main body of
communication, we must build a mechanism to name and address ODS.

The second is component communication transferring protocol. Once the naming
and addressing mechanisms are built, communication relationship between
components can occur. At this moment, the main problem iS the data type def'mition
and routing of communication content. This is similar to the IP protocol in network
lay er in T CP/IP.

The third is component c o - - c a t i o n transferring control protocol. The construction
of comporfent conmamication tmnsfenfng control protocol provides basic function ~aranty
for the cormamication between components. But only sknple data package transferring is
not sufficient for the corrmamication between components, we rntmt have advanced
protocols to control transferring of data package, which provide resend rnechanisrn, dataflow
control and corr~onent/connector ~ t mechanis~ This is similar to the transfer
layer of TCP/IP.

The fourth is component communication management protocol. Based on the
first three protocols described above, communications that have some fault-tolerant
techniques are possible, but system manager may hope system to have more control
function, such as judgment of components' reach ability, the source suppression of
dataflow control, redirector and respond, etc, to provides these extra control ability,
the component communication management protocol is introduced. This protocol is
on the same level with component communication transferring protocol; it can
provide services for the component communication transferring control protocol.
This is similar to the ICMP protocol in network layer in TCP/IP. The
communication protocol stack in connector model is showed in Fig,2.6.

Component communication
transferring control protocol

Component communication Component communication
transferring protocol management protocol

Component naming and
addressing protocol

Fig. 2.6 Communication protocol stack in connector model

(2) The adapted steady algorithm of connectors
To improve the steady of communication protocol stack in component

communication process, it is necessary to design some adaptive steady algorithm; so

48 Software Architecture

as to repair errors that occur when components are communicating with each other.
We can use math methods such as fault-tolerant neural networks and genetic
algorithm to design algorithm, implement the robust communication protocol stack.
We can encapsulate the designed algorithms to communication management
component or connector models' communication protocols, so that the adaptive
steady connector model is built.

In the part mentioned above, we have only introduced the basic principle of
object-oriented system, including components, connectors and configurations, and
the communication protocols between them. In fact, the object-oriented architecture
style has a certain activation model, which is similar, or the same to the activation
model of event driven architecture. Some reader may ask, since these two
architecture styles have the same activate model, and the author said the activate
model is the main criterion to classify architecture style, why not treat these two
styles as the same one? The main reason is: we think these two styles do not
describe a problem from the same perspective. The object-oriented style mainly
describes systems from their static model, and emphasizes the data encapsulation
and abstraction, which is of great help to sys tem' s modulariz at ion and extension.
But the event driven style mainly describes systems from their dynamic activity,
and emphasizes the relation between event generator and event processor. In fact,
most of the object-oriented systems have the event driven activate model, as readers
will see in the following parts of this chapter. In the following part, we will give a
typical application of object-oriented architecture style. In this example, readers will
also find some typical characteristics of event driven style. Readers may do not
know the definition and description about event driven architectural style. It
doesn' t matter, because after reading Section 2. 4, you will certainly f'md the
answers, and then can go back to review this example.

The problem statement is: a company intends to build a two-floor building and
equip it with an elevator. The company wants you to develop an object-oriented
software-simulator application that models the operation of the elevator to
determine whether it will meet the company 's needs. The company wants the
simulation to contain an elevator system. The application consists of three parts.
The first and most substantial part is the simulator, which models the operation of
the elevator system. The second part is the graphical user interface or model on
screen so that the user may view it graphically. The final part is the graphical user
interface, or GUI, that allows the user to control the simulation.

A system is a set of components that interact to solve a problem. In our case
study, the elevator-simulator application represents the system. A system may
contain "subsystems", which are "systems within a system". Subsystems simplify
the design process by managing subsets of system responsibilities. System designers
may allocate system responsibilities among the subsystems, design the subsystems,
and then integrate the subsystems with the overall system. From .problem
statement, we can see the overall system will include three main part (or can be
called subsystem): the first is simulator model (which represents the operation of

2 Architectural Styles and Patterns 49

the elevator system), the second is the display of this model on screen (so that
users may view it graphically), and the third one is the graphical user interface (that
allows users to control the simulation). This is a simple instance of MVC, which is
a popular pattern in software architecture design (Note: do not treat MVC as a kind
of design pattern, the MVC pattern is on a higher level). The mechanism of MVC is
just an instance of event driven architecture style; we will describe it in later
section.

The main aim of this example is to make readers understand the principle of
object-oriented architectural style; hence we will only describe the analysis and
design of first part: simulator model. In this subsystem, many entities are

recognized and the relationships between them are identified.
We often choose nouns that perform in~ortant duties in our nxxiel, for this reason we

omit several nouns that do not play in~ortant roles. For example, we need not to nxxiel
"corr~any" as a class, because the company is not part of the simulation; the company
simply wants us to rrxxiel the elevator. We do not rrxxiel the office building, or the actual
place where the elevator is situated, because the building does not affect how our elevator
simulation operates. We determine the classes for our system by grouping the ren-aining
nouns into categories. We discard "elevator system" for the time being we focus on
designing only the system ~ s model and disregard how this nxxtel relates to the system as a
whole. We can identify the group of nouns as these following; model, elevator shaft,
elevator, person, floor (first floor, second floor), elevator door, floor door, elevator button,
floor button, bell, fight. These categories are likely to be classes we will need to impletrmat
in our system Notice that we create one category for the buttons on the floors and one
category for the button on the elevator. The two types of the button in the elevator inform
the elevator to move to the other floor.

We can now model the classes in our system based on the categories we created.
The UML enables us to model, via the class diagram, the classes in the elevator
system and their interrelationships. Fig~2.7 shows the complete class diagram for the
elevator model. We model all classes that we created, as well as the associations

between these classes.
Class diagrams model the structure of the system by providing the classes, or

"building block", of the system. In a class diagram, each class is modeled as a
rectangle; a solid lien that connects classes represents an association. An association
is a relationship between classes. The numbers near the lines express multiplicity
values. Multiplicity values indicate how many objects of a class participate in the
association. From the diagram, we see that two objects of class FloorButton
participate in the association with one object of class ElevatorShaft, because the two
FloorButtons are located on the ElevatorShaft. Therefore, class FloorButton has a
two-to-one relationship wi th class FloorButton. We also see that class ElevatorShaft
has a one-to-two relationship with class Elevator and vice versa. Using the UML,
we can model many types of multiplicity. Readers who are not familiar with UML

may refer to some special books.

50 Software Architecture

Light]2

A
Turns
on/off

FloorDoor 12

1

A
Opens

1

ElevatorDoor ~l Open~
i

Crates P-
11

I Elevato~Mode' ~ ' 21 Floor [1
1

I
Walks

1 across

i~ L'~ esetsl~ ,oo utton [

, I . qu sts l 1 Signal -,9 Presses 11 .
arrival] .,9 Presses 1 I

1 S ignals to 1
~<~ Elevator L .91 move i--i ResetsD..l I Elevat~176]

t II
Rin~ -,9 Rides

I I

1 0. .*

ers n]

1

Fig. 2.7 The class diagram of elevator simulation

An association can be named. For example, the word "Requests" above the line
connecting classes FloorButton and Elevator indicates the name of that
association--the arrow shows the direction of the association. The diamond
attached to the association lines of class ElevatorShaft indicates that class
ElevatorShaft has an aggregation relationship with classes FloorButton and Elevator.
Aggregation implies a whole/part relationship. The class that has the aggregation
symbol (the hollow diamond) on its end of and association line is the Whole (in this
case is ElevatorShaft), and the class on the other end of the association line is the
part (in this case, classes FloorButton and Elevator). In this example, the elevator
shaft "has an" elevator and two floor buttons. The "has an/has a" relationship
defines aggregation.

Class ElevatorModel is represented near the top of the diagram and aggregates
one object of class ElevatorShaft and two objects of class Floor. The ElevatorShaft
class is an aggregation of one object of class Elevator and each object of classes
Light, FloorDoor and FloorButton. Class Elevator is an aggregation of classes
ElevatorDoor, ElevatorButton, the association name Presses and the name-direction
arrowheads indicate that the object of class Person presses these buttons. The
object of class Person also rides the object of class Elevator and walks across the
object of class Floor. The name Request indicates that an object of class
FloorButton requests the object of class Elevator. The name Signals to move
indicates that the object of class ElevatorButton signals the object of class Elevator

2 Architectural Styles and Patterns 51

to move to the other floor. The diagram indicates many other associations, as well.
In this part, we only model the class diagram. The most important principle

readers should remember about object-oriented architecture is" always treat system
as a collection of objects and the relationship between them. On the analysis
mentioned above, we introduce the associations and aggregation; they all are kinds of
relationship between objects. When the system is running, objects communicate with
each other through sending and receiving messages between them. Generally
speaking, nearly all of the programs in nowadays are object-oriented; this is why the
object-oriented technologies are developing so quickly. For system designers, the
most important thing to do is to design the system using object-oriented analysis
and design, so as to make designed system easier to understand and evaluate. As an
object-oriented architecture style, it has much relation with event driven style. We
will continue to introduce this example.in the event driven p a r t ' s case study.

2 .4 Event-driven

2 . 4 . 1 Style Description

Event-driven style is also called Publishing-Subscription style in many books. Its
basic viewpoint is that a sys t em ' s behave to outer environment can incarnate from
its processing method to events. If we want to understand a system, we can simply
input an event to it, and then watch its output, so as to analyze a system. The
conceptual event-driven system is shown in Fig.2.8.

I ~
input [Eventreceiver iEventprocessor I I "-

feedback

Fig. 2.8 Conceptual model of event-driven system

Event-driven system has the following characteristics: (1) system is composed
by many subsystems or elements, but we consider the subsystems in event-driven
architecture style are different from that in the object-oriented systems; they
describe s y s t e m ' s decomposition from different perspectives. For instance, the
subsystems in event driven system can be classified into operation system and
management system, but components in object-oriented systems are not classified
into operation system and management system in general cases; (2) systems have
certain goal, under the control of some message mechanism, subsystems collaborates
with each other to achieve s y s t e m ' s ultimate goal; (3) under some certain message
mechanism control, system adapts and collaborates with environment as a single
object; (4) among these subsystems, one of them plays the leading role, and other
subsystems are on the subordinate status; (5) any systems and any elements in the
system have an event collector and a event process mechanism, it communicates
with outer environment through this mechanism.

52 Software Architecture

From the above characteristics, we can get the following conclusions: (1)any
subsystem of the system certainly has its own dependence, it communicates with
other subsystems through message mechanisms; (2) from this viewpoint, the
structured, modularized parts can not be called subsystem. (3) the object-oriented
event-driven system design methods treat software system as a single object, and
classify it into subsystems to implement.

Fig.2.9 shows a sample of the event-driven based system.

Fig. 2.9 Event-driven software system

This event-driven system is composed by elements A, B, C, D, E, F, H and I.
Please do not treat A as sub-modular or sub-program, and do not treat B and C as
A ' s sub-modular or sub-program. In the event-driven system, we just treat (B, E,
F), (D, H, I), A, C as the sys tem's subsystem. A is on the dominate position, it is
the coordinator of other systems, and is also their leader. A makes system run
correctly through sending messages to B, C, and D, and collecting messages from B,
C and D to subsystem (B, E, F) and (D, H, I), the dominate subsystem are B and D
respectively.

In the design of event-driven system, we must consider the integration and
independence of every subsystem. We will not depend on a certain subsystem
absolutely, the collaboration and management between systems are through the
transferring and collection of messages. This mechanism is similar to society.
Everyone in the world can be treat as a subsystem. He is independent to others, but
mankind can collaborate life and work through message transferring, compose family
and society, form new system. Just as man is the opposite body, the event-driven
based system must treat every subsystems in it as opposite body of general
character and individuality, we must not only consider each subsystem' s social
characteristic, but also its personality.

The design of event-driven based system has the following principles: (1) We
always treat the described objects from the system perspective, so we must
decompose system properly, guaranty the dependence and society of every
subsystem. (2) No matter how the system complicated, how different the
subsystems are, any subsystem can be classified into management system and
operation system. Operation system has no subsystem, but management system has
subsystem, its subsystem not only can be management system, but also can be
operation system. (3) To reach the overall sys tem ' s goal, every subsystem
cooperates with each other through message transfer and message operation.
Generally speaking, subsystems that lay on the same level do not transfer messages

2 Architectural Styles and Patterns 53

directly, but they transfer messages through their parents system. This mechanism
can depress sys tem's coupling, and collaborate actions. (4) Any subsystem, either
operation subsystem or management subsystem, has an event processor, to process
the events given by its parent system. The management subsystem must also have
an event distribution mechanism and event collection mechanism, can judge the event
given by parent, and give it to children to operate, and can collect events given by
children. (5) In an integrated system, we must have such a system; it has no parent,
and collects outer events and subsystems' events. (6)Generally, the management
subsystem does not do concrete operation, its main function is to complete tasks
through guiding their children; the functional operations are generally completed by
operation subsystem. In another word, the management subsystems mainly do
conceptual operation, not concrete operation. (7) In general condition, exclude the
advanced management subsystems, subsystems respond only when there are some
requests.

From the previous description, readers can find, event-driven system has the
recursive characteristic in some meaning, and forms the "part-whole" hierarchy, and
can be represented by attribute structure. Users can compose many simple
subsystems to form a larger subsystem; these large subsystems can form larger
subsystems recursively. A simple represent method is to define a class for
operation system, and define the container class for these operation subsystems,
which is called management system.

But this method has some faults. Using these classes ~ codes, we must treat
operation system and management system respectively; the real cases for uses are
the same in most cases. Treating these two systems respectively will make the
implementation and usage of the whole system more complicated. To simplify
event-driven based systems ' design, implementation and usage, we can draw the
composite pattern in design patterns theory, to define, organize and manage event-
driven sys tem's operation subsystem and management subsystem. The key point
to simplify it is to define an interface (abstract class), it can not only represent
operation subsystem, but also represent the operation~ s container (which is called
management subsystem). In Fig,2.10 we show the basic structure of the event-driven
system's class view.

From the figure above, we can find in the event-driven system, clients
communicate with event system, the event system can be classified into two types:
execute system (also can be called operation system in the previous part) and
manage system, each of which has its own event process methods.

The event-driven style has the following advantages: (1) Event-driven style is
suitable to describe system families, in any systems that belong to the same family,
the description of sys tem's advanced management subsystem is completely similar,
so it can be reused. (2) Because the advanced management subsystem has the control
power, and subsystems that in the same level do not communicate with each other
directly, it is easy to implement concurrent process and multiple tasks' operation.
(3) The event-driven based systems have good extendibility, designers only need to

54 Software Architecture

Client

/
ExecSystem

"~ EventProcess()

EventSystem

'~ EventProcess()
Add()

~. Remove()
"~ GetClild()

EventDistrbute()
EventCollect()

ManageSystem

"~ EventProcess()
,~ Add()

Remove()
GetClild()

"~ EventDistrbute()
"~ EventCollect()

Fig. 2.10 Basic structure of event-driven pattern

register an event interface for an object to bring this object into the system, and this
do not impact other system objects. (4) It defines the class hierarchy structures that
include both operation subsystems and management subsystems. The subsystems in
the event-driven system can be composed to form a more complicated management
subsystem, and this subsystem can also be composed. It is recursive. In customer
code, any quote citation to operation subsystems can be replaced by a management
subsystem, and the transparence to users is implemented. (5) Simplify users ' code.
Users can call the operation subsystem and management subsystem using the same
way. In most cases, users do not know, and do not care about whether they have
called an operation subsystem or a management subsystem. (6) This kind of style

can make system design more general. We can easily add new subsystem. But at the
same time, there may be some problems: it is hard to constraint operation
subsystems in management subsystems. At some times, system designers hope a
management subsystem can only have some special subsystems, but using recursive
structure, w e can not achieve this goal, we must check it in the running time.

The event-driven based system also have the following disadvantages: (1) the

most deadly disadvantages of event-driven based system is: the components weaken
the control ability to system computing. When a system publishes an event, it can

not make sure this event will certainly be responded by system~ s other objects.
Even if it can make sure the event will be responded by other objects, it can not
make sure the sequence that the objects will respond. (2) Another problem in event-
driven system is the data sharing. In many cases, sys tem designers must define some
shared buffers, so that objects in the system can exchange data. In this case, how to
guaranty shared data can be visited properly becomes a key problem. The data
consistence applications' results in database theory may provide beneficial
methods. (3) The logical relationship in systems becomes more complicated. Because
the call relations between objects are not fixed, in different cases, the same object

2 Architectural Styles and Patterns 55

may generate different results when activated, that is to say, the object
implementation is context dependent, it is impacted by the current status when
activated.

The event-driven architecture style often requires independent components.
Independent components are a form of distributed system, so they may exist the
potential performance loss. In the design of architecture structure level, the
performance attribute is processed in the boundaries between components (this is
just opposite to optimization' s implementation). The communication pattern may
depress performance; so, when designing independent components, we must
consider the cost of communication itself. If we use authorized communication or
asynchronous communication, the communication between components may be less,
but each communication may includes more data. For the interactive systems driven
by users' command, the communications between components may be frequent but
each communication includes small size of data.

Some reader may ask: what is the difference between event-driven style and
object-oriented style? Are they the same? From the O O P ' s view, event-driven and
object-oriented concepts are the basic concepts in object-oriented languages, such as
Java, C# . Just as described above, the object-oriented based systems are composed
by many encapsulated objects, objects communicate with each other through
message transfer, and event-driven is just an implementation of message transfer
mechanism. Hence, the event-driven based systems generally are object-oriented, but
the objects in systems do not only include member variable and member methods,
but also include a series of events, which are called objects' event interfaces.

The event interfaces define events that some objects must process. When these
events occurred, the process program about this object' s event will be activated,
thus forming the event-driven mechanism. Obviously, objects in system do not only
receive and process events passively, they may generate some events. At this
moment, we may associate this mechanism with Fig, 2. 11. Events ' generation
process and trigger process run round and round, the whole system are running in
this way. This is basic characteristic of event-driven based system.

[Event generator [I Event trigger I

Fig. 2.11 Event' s generator and trigger

2 . 4 . 2 Study Case

Event-driven is the core of JavaBean architecture. In this part, we will take
event-driven in JavaBean as example, to provide a reference real system for readers.

JavaBean system treats some components as eventsource through event-driven
mechanism, these component can generate events that can be received by description
environment and other components. So, different components can be composed

56 Software Architecture

together in the container tools. The components transfer information through events,
so application is formed. In conceptual level, event is a transfer mechanism that
exists between "source objects" and "listener objects". Events have many different
usages. In Windows applications, we must process mouse events, window boundary
events and keyboard events. In Java and JavaBean, a general, extendible event
mechanism is defined, this mechanism can: (1) Provide a common framework for
event type, transfer model' definition and extension, which is suitable for wide
application. (2) The high integration with Java language and its environment. (3)
Event can be captured or triggered by description environment. (4) Make other
construction tools control events, events ' resource and events ' listeners '
relationships directly using some technologies. (5) The event mechanism itself does
not dependent on complicated developing tools.

Besides implementing the basic functions described above, the event-driven
mechanism in JavaBean can realize the following special functions: (1) can find
events that specified object classes generate. (2) Can find events that specified
object classes listen. (3) Can provide a general register mechanism, which permit the
dynamic operations to the relationships between event source and event listeners.
(4) Can implement without other virtual machine and language. (5) Event resource
can transfer events efficiently with event listeners. (6) Can accomplish the neutral
reflection mapping from JavaBean's event model to other relative components
architecture's event model.

In the following parts, we will describe the mechanism of JavaBean in short.
Events ' transition from event source to listeners is through the call of Java methods
to listening objects. For each explicitly generated event, we define according explicit
Java method. These methods are integrated in the event listener interface, this
interface must inherent abstract class java.util.EventListener.

The classes that implement some or all methods defined in event listener
interface are event listeners. Along with the generation of events, the according
states are encapsulated in the events' status object, this object must inherit java.
util.EventObject. Event status object is transferred into the response event listeners
as the parameters.

The identifier of event source that gives out certain event is: to define register
method for event listeners conforming to the design pat terns ' rule, and to accept the
reference of event listeners interface instance.

At some times, event listeners can not directly implement event listener
interface, or there are other extra actions, we must insert an event adapt class
instance between source and other listeners, to build the relationships between them.

Event state object: the state information that is relative to event generation is
generally encapsulated in an event state object; this object is the subclass of java.
util.EventObject. In accordance with convention, this event state object class' name
is ended with Event, such as "M ouseM ovedExamp leEvent".

Event listener Interface and event l istener: because Java event model is
based on method call, we must define and organize the patterns of event operation

2 Architectural Styles and Patterns 57

methods. In JavaBean, event operation methods are defined in the EventListener

interface that inherits java. util. EventListener class. Conforming to the rule, the

EventListener must end with Listener. Any class that wants to operate with the
methods defined in the EventListener interface must implement this interface. This

type of class is called event listener.
Event l i s teners ' reg is t ra t ion and cancellat ion: to make the possible event

listener register itself into the proper event source, and build the event flow between

source and event listener, event source must provide registration and cancellation

method for event listener. In real cases, the event listener uses standard design

patterns to implement its registration and cancellation.
We will in t roduce a type of class: adaptive class. Adaptive class is a very

important part in JavaBean event model. In some applications, the events ' transfer

from source to listeners must go through the adaptive class to retransmit. For

instance, when event source send an event, many event listeners can receive this

event, but only one specified object response. We must insert an event adaptive

class between event source and event listener, and this adaptive class specifies

listeners that must response to this event.
The adaptive class is event listener. In fact, event source register adaptive class

behaves as listener into the sequence of listener, but the real event responder does

not response in the sequence. The action that event listener must do is fixed by

adaptive class.
At last, we will continue to introduce the elevator example. If you do not

understand the problem statement, you can refer to Section 2.3, which will make

you easier to understand the content of this part.
In object-oriented languages, an Event is a message that notifies an object of an

action that has already happened. For example, in this section, we modify our

simulation so the Elevator sends an elevatorArrived event to the Eleva tor ' s Door
when the Elevator arrives at a Floor. The Elevator opens this Door to determine the

actions to take when the Elevator has arrived, such as notifying the Person that the

Door has opened. This reinforces the OOD principle of encapsulation and models
the real world more closely. In reality, the door---not the elevator "notif ies" a

person of a door ' s opening,
In our simulation, we create a super class called ElevatorModelEvent that

represents an event in our model. ElevatorModelEvent contains a Location reference

that represents the location where event was generated and an Object reference to
the source of that event. In our simulation, objects use instances of

ElevatorModelEvent to send events t o other objects. When an object receives an

event, that object may use method get Locat ion and method getSource to determine

the events ' location and origin.
For example, a Door may send an ElevatorModelEvent to a Person when

opening or closing, and the Elevator may send an ElevatorModelEvent informing a

person of a departure or arrival. Having different objects send the same event type

to describe different actions could be confusing, To eliminate ambiguity as we

58 Software Architecture

discuss what events are sent by objects, we creme several ElevatorModelEvent
subclasses, as shown in Fig.2.12. So we will have an easier time associating each
event with its sender. According to Fig,2.12, classes BellEvent, PersonMoveEvent,
Light Event , ButtonEvent, ElevatorMoveEvent and DoorEvent are subclasses of
class ElevatorModelEvent. Using these event subclasses, a Door sends a different
event (a DoorEvent) than does a button (which sends a ButtonEvent).

I ElecatorModelEvent]

Bell

ent [

[PersonMoveEvent]

Fig. 2 .12

oorEvent

I Butt~ I ~ '

I ElevatorMoveEvent]

Class diagram that models the generalization between
ElevatorModelEvent and its subclass

The concept of event-driven in software architecture style is similar to the
concept of event handing in Java. In Java programming language, the Event handling
consists of an object of one class sending a particular message (which java calls an
event) to objects of other classes listening for that type of message. The difference
is that the objects receiving the message must register to receive the message;
therefore, event handling describes how an object sends an event to other objects
"listening" for that type of event--these objects are called event listeners. To send
an event, the sending object invokes a particular method of the receiving object while
passing the desired event object as a parameter. In our simulation, this event object
belongs to a class that extends ElevatorModelEvent.

We now present a collaboration diagram in Fig,2.13 to show the interactions of
two Person objects--waitingPassenger and ridingPassenger--as they enter and exit
the Elevator.

According to messages 1, 2, 3 and 4, the Elevator performs only one action--it
sends elevatorArrived events to objects interested in receiving those events.
Specially, the Elevator object sends an ElevatorMoveEvent using the receiving
object' s elevatorArrived method. Fig, 2. 13 begins with the Elevator sending an
elevatorArrived event to the ElevatorButton. The ElevatorButton then resets itself
(message 1.1). The Elevator then sends an elevatorArrived event to the Bell (message
2), and the Bell invokes its ringBell method, accordingly (i.e., the Bell object sends
itself a ringBell message in message 2.1).

The Elevator sends an elevatorArrived message to the ElevatorDoor (message 3).
The ElevatorDoor then opens itself by invoking its openDoor method (message 3.1).
At this point, the elevator is open but has not informed the ridingPassenger of
opening, Before informing the ridingPassenger, the ElevatorDoor opens the

2 Architectural Styles and Patterns 59

- - ' " ' t <<paramenter>>
.- (DoorEvent)

3.2.1" doorOpened() 3.2 :openDoor()
-" firstFloorDoor'Door

4.1.1" resetButton() 4.2.1 :turnOnUght()

I

4.1 elevatorArrived() 4.2 :elevatorArrived()

i 4elevatorArrived()

waitingPassenger:Person ridingPassenger:Person

 ,ev tor I
3.2.1.1 :enterElevato'r() / , 2 I ~ 3.3.~ :exitElevator()l[

�9 3.3 : doorOpene d()
1 elevatorArrlved() / : . ~~2 .e leva to r 11 3:elevator~~ 3"]

Arrived() ~ [Arrived() NN, q [

elevatorButton:But~ , , " " .-L ~ elevatorDoor:Door]

1. l'resetButton() ,," 3. l'openDoor()
s ' j ' ~ - s .,,. ,.. ~ ," 2.1 :ringBeli() , . .--"

r

<<parameter>> ~ <<parameter>> t~
(Elev atorMoveEvent)] (Location) /

Fig. 2.13 Collaboration diagram for passengers entering and exiting
the Elevator on the first floor

firstFloorDoor by sending an openDoor message to the firstFloorDoor (message
3.2)--this guarantees that the ridingPassenger will not exit before the firstFloorDoor
opens. The firstFloorDoor then informs the waitingPassenger that the
f'trstFloorDoor has opened (message 3.2. 1), and the waitingPassenger enters the
Elevator (message 3.2.1.1). All messages nested in 3.2 have been passed, so the
ElevatorDoor may inform the ridingPassenger that ElevatorDoor has opened by
invoking method doorOpend of the ridingPassenger (message 3.3). The
ridingPassenger responds by exiting the Elevator (message 3.3.1).

According to messages 1, 2, 3 and 4, the Elevator performs only one action--it
sends elevatorArrived events to objects interested in receiving those events.
Specially, the Elevator object sends an ElevatorMoveEvent using the receiving
object~ s elevatorArrived method. Fig, 2. 13 begins with the Elevator sending an
elevatorArrived event to the ElevatorButton. The ElevatorButton then resets itself
(message 1.1). The Elevator then sends an elevatorArrived event to the Bell (message

60 Software Architecture

2), and the Bell invokes its ringBell method, accordingly (i.e., the Bell object sends
itself a ringBell message in message 2.1).

Lastly, the Elevator informs the ElevatorShaft of the arrival (message 4). The
ElevatorShaft then informs the firstFloorButton of the arrival (message 4.1), and the
firstFloorButton resets itself (message 4.1.1). The ElevatorShaft then informs the
firstFloorLight of the arrival (message 4.2), and the firstFloorLight illuminates itself

(message 4.2.1).
We demonstrated event handling between the Elevator and object ElevatorDoor

using the modified collaboration diagram of Fig, 2. 13--the Elevator sends an
elevatorArrived event to the ElevatorDoor (message 3). We first must determine the
event object that the Elevator will pass to the ElevatorDoor. According to the note
in the lower left-hand comer of Fig,2.13, the Elevator passes an ElevatorMoveEvent
(Fig. 2. 13) object when the Elevator invokes an elevatorArrived method. The
generalization diagram of Fig,2.12 indicates that ElevatorMoveEvent is a subclass of
ElevatorModelEvent, so ElevatorMoveEvent inherits the Object and Location
references from ElevatorModelEvent.

For an event-driven architecture style, the Event handling is one important part.
In this example, the ElevatorDoor must implement an interface that "listens" for an
ElevatorMoveEvent--this makes the ElevatorDoor an event listener. Interface
ElevatorMoveListener must provide methods elevatorDeparted and elevatorArrived
that enable the Elevator to notify the ElevatorMoveListener when the Elevator has
arrived or departed. An interface that provides the methods for an event listener,
such as ElevatorMoveListener, is called an event listener interface in java
programming language.

Methods elevatorArrived and elevatorDeparted each receive an ElevatorMoveEvent
object as m a r ~ t . Therefore, when the Elevator "sends an elevatorArrived event"
to another object, the Elevator passes an ElevatorMoveEvent object as an argument
to the receiving object ~s elevatorArrived method.

The example's basic events sequences are described above. Generally speaking,
the event-driven mechanism is necessary for every object-oriented system. Because
every object must communicate with other objects through messages, and messages
can be treated as an event sent to other objects. The return value for a method call
can also be treated as a kind of event. After receiving the return value, the original
object can do some according actions, i sn ' t it an event driven?

We will give another example. In the Turbo Pascal 6.0 developed by Borland
Company, an object-oriented event-driven programming tool package named Turbo
Vision is provided. Turbo Vision classifies visual object on the screen into two
types: one is operation object, the other is management object. They are called
TView and TGroup respectively. Yet TGroup and TView have some common
things, so TGroup is inherited from TView. In the Turbo Vision, TGr0u p ' s object
do not do real action, do not show itself in the screen, but show it through its
subclass ~ object. All of the real actions are done through the TView class.

Turbo Vision well incarnates the soul of object-oriented method and event driven

2 Architectural Styles and Patterns 61

programming design. Tapplication is a runable interactive programming Except
starting and exiting, it does not provide any function. Using Turbo Vision, users can
develop the high quality application program effectively and quickly. Fig.2.14 shows
the objects' structure in the Turbo Vision software package.

TView TGroup TProgram TApplication

TBackGround TWindows TDialog

TFrame TDestop

TMenuView] TMenuBar

TMenuBox
TStatusL ine

TListViewer

TStaticText]

TCluster

TButton

TScrollBar
TScroller

TListBox
THistory Viewew

TLaole
TparaText
TCheckBox
TRadioButton

TTextDevice TTerminal

Fig. 2.14 Objects' structure in Turbo Vision

Generally speaking, Tapplication has three sub-object called TMenuBar,
TDeskTop and TstatusLine. The TDesktop has its own sub-object TBackGround.
In the practical run time, Application creates a variety of TWindows classes and
TDialog classes, and delegate DeskTop to manage. The DeskTop objects'
installation is changed with the running of program. The Twindows object and
TDialog object also modifies with the difference of application, the typical
TWindows and TDialog objects' installation structure are shown in the Fig,2.15.

Window

Frame

Vertical
ScrollBar

Scroller

Horiaontal Fra~
ScrollBar

Oia, og]

r ~

ooll utt~ I Istat
Fig. 2.15 The structure of TWindows and TDialog' s object

icTex!

Turbo Vision abstract events into three types: location event, aggregation event
and broadcast event. The typical location event is mouse event, TGroup class view
brings the location event to sub-view that manages this field; the typical aggregation
event is key event and command event. TGroup class view brings this event to the

62 Software Architecture

low level view that is in the aggregation status; broadcast event is the event that the
management view do not know whom to bring it to, for this kind of event. The
TGroup will bring it to all its views.

When the Turbo Vision program is running, the object of Tapplication will
collect mouse events, key events and all other events, then bring them to the low
level objects to deal with in certain rule. For instance, for the mouse events, if it
occurs in the menu bar, then it will bring the event to the menu bar to deal with; if
it occurs in the status bar, then it will bring it to the status bar to deal with; if it
occurs in the DeskTop, then it will bring it to the DeskTop to deal with. In a word,
the detailed problems are always dealt with by the low level object. The task of
status bar and menu bar is to translate the key events and the mouse events in its
own place into command events, then hand in them to Tapplication.

2.5 Hierarchical Layer

2 .5 .1 Style Description

A layer system uses the hierarchical organization. In this type of system, every
layer must take two roles. First, it must provide services for the upper layer in the
structure. Second, it must call the lower l ayer ' s functions as the customer of the
lower layer. Besides these two roles, any layers in the whole system must satisfy
these two requirements at the same time. At the meantime, the highest layer has no
higher layer, it need not provide any service; the lowest layer has no lower layer,
and has no function to call. In some layer systems, inner layer only .communicates
with the adjacent outer layer in the system, and is transparent to other layers. In
some special conditions, for the requirement of processing, inner layer may open
some service for other layers to call. In this case, the layer syst.em' s components in
different layers form virtual machines that have different function level, every
virtual machine communicates with each other according to the protocols fixed when
the system was designed, but for the layers that are not adjacent, the
communications between them are constrained. A conceptual layer system model is
shown in Fig,2.16.

In Fig,2. 16, three layers are shown. The core level is the basis of the whole
system, the lowest level ' s function calls are implemented by the core level; the
function level is on the middle level of the whole system, which is adjacent to the
lowest level and the highest level. It not only visit services provided by core level,
to implement its own function, but also provide functions that the highest level will
use; the highest level is an interface to the outer environment for the whole system,
users can visit functions that the whole system provides by visiting the highest
level. In these three levels, there are many function components, every level is a
virtual machine composed by a component. Every virtual machine communicates
with each other through system design's protocols (they may be standard protocols

2 Architectural Styles and Patterns 63

m

Functional layer (middle level)

Core layer (lowest level)

Application layer (highest level)

Fig. 2.16 Layer model

or completely personal protocols), the communication manner is incarnated by
procedure calls.

Of course, the shown layer model figure is only a sketch map. In real
applications, the function level is not composed by only one level. It may composed
by many levels, which collaborate with each other, form an integrated system that
has powerful functions.

The layer style has some advantages that system designers can not reject:
(1) Layer style supports the gradual abstraction in system design process. When

the system designers design the system, they can decompose the complicated
functions that the whole system must implement into many different levels, for
these levels themselves, they can pretty simple, their functions are increasing. That
is, the original problems are decomposed by designers using layer style pattern. We
divide system from its function, and incarnate the changes in function by system
design; at last, the complicated software architecture is formed. (2) The layer system
has good extendibility. Just as we described in pipes filters style, if a system has
good extendibility, when one part of the functions or their implementation changes,
the whole system will not be influenced much. Combining with layer s ty le ' s
characteristics, this advantage can be described as: If system's function or
implementation on one level changes, these changes are only relative to their
adjacent levels, that is to say, at most, two levels in the whole system are
influenced. If the modifications on this level are only some functions' concrete
implementation technologies, and the interfaces, for outer environment are not
modified, then the adjacent levels almost have no influence. Because the concrete
imp lement at ions in every level are transparent for other levels, and the adjacent level
only communicates with each other through procedure calls, conforms to the
communication protocols between layers, the details about services are independent
to the called layers. (3) The layer style support software reuse. This characteristic
about the layer style is similar to the object-oriented style, that is, if the interfaces
are consistent, the different implementation on the same level is used alternately.
Because of experiences, technologies, develop time and economic benefits and so on,
when the system is first designed, some levels' implementation may not be ideal.
With the chan~qg of the constraint, system designers may modify the original
design blueprint about these levels, or they may improve the original levels'

64 Software Architecture

implementation. At this time, the second, third versions of these levels' design
appear. But if we can guaranty that all these versions have the same interface, then
these versions can replace with each other without constraint, and the replacement
will not influence systems' other layers or the whole s y s t e m ' s function. At
present, many standardization organizations use the layer style methods to define
the standard function level interfaces, but do not constraint the implementation
methods. So, if the different software manufacturers conform to the standard
interfaces, they can develop the production themselves, and the finished software
production can be integrated with production developed by other software
manufacturers. This is very important for computer system integration companies.

In Stephen T. Albin's view in "The Art of Software Architecture: Design
Methods and Techniques", hierarchical layer is not a real architecture style. He
considers layer as the basic attribute of large complicated software architecture. In
Stephen's view, all of the complicated systems have different layers, this means
there exists a basic architecture structure view that represents system' s
composition. So, Stephen did not describe the hierarchical layer in single part.

But in our opinion, not all systems are suitable to be designed using layer style.
For some systems, though we can divide sys t em ' s function into different levels
conceptually. We have to combine the high level function and the low level
implementation together for the performance reason; this enhances the coupling of
different levels. In addition, which level is suitable for the abstracted functions? This
is also a headachy problem for system designers, especially. If we want to build a
standardization general layer structure, the problem is especially serious. The
advantage of layer style is the abstraction of function level and the low coupling
between them. This is just the implementation difficulty. So, system designers have
to find a balance between the concept design and concrete implementation.

2 . 5 . 2 Study Case

In the design of computer networks, we use the layer style methods. Similar with
mails' sending process, the data transfer also has many steps, and each step is
finished by one or many special layers. So, network protocol designers divide every
parts of computer networks into many layers according to their function. Each of
these layers can be treated as an independent black box, a close system. Users only
care about the outer characteristics of each layer; they need to know the input,
output and data process' definition of each layer; they also need to know what to
do with data, and which data is suitable to transfer into the lower layer. Every layer
in the network is built on the basis of its higher layer, it only receives data from the
higher layer, and only need to be in charge of the provision of services for the lower
layer.

In iaetwork application design, customers only care about the outer
characteristics of each layer, but do not care about the details in each layer. This
makes each layer becomes an isolation, when one layer' detail change, the functions
in other layers will not be influenced. Hierarchy design is the basic methods to

2 Architectural Styles and Patterns 65

describe network architecture, and the architectures that designed using this method
always have the characteristics of hierarchy.

In the following part, we will describe the ISO/OSI reference model as example,
so as to show the application of layer style.

ISO/OSI uses the 7-layer hierarchy architecture. From thehighest level to the
lowest level they are: application layer, representation layer, session layer, transfer
layer, network layer, data link layer and physical layer, as showed in Fig,2.16. The
highest layer is the seventh layer--application layer, which is used to exchange data
with application service; the lowest layer is the first layer, physical layer, which is
used to connect physical transfer medium so as to implement the real data
communication; the associations between layer and layer are implemented through
the interfaces between layers. The higher layer requests services to the lower layer
through interfaces and the lower layer provides services for the higher layer. When
two computers communicate through network, only the two physical layers can
implement the real data communication through medium. The direct communication
relationship about the other layer that is on the same layer does not exist. The
layers that are on the same level can only implement virtual communication through
protocols of theft layers.

Application control t e r m /
(resource sub-network)

i ~,o.ication.ayer ~- "t ~po.~cation.ayer I

Medial interface <2 [

(C O tran Sufneirc c t~ tsr~ o r k~k/

Fig. 2 .17

I ~eoresentation.ayer ~- -q ~eorosontation.ayor I

I Sessionlayer ~.~ ~ Session layer I

trans~or.ayo~ 1" "q traos~or.ayer I

I networklayer ~,~ ~ network layer I

Data link layer ~ ~ Data link layer

Physical layer ~ - ~ Physical layer

I Physical transfer medium

ISO/OSI network 7-layer architecture

To understand the function of every layer in ISO/OSI, we will take the transport
company's goods transport as example in this part. This familiar example is helpful
for you to understand the abstract concepts. The l s t ~ 3rd layers in the ISO/OSI
reference model are similar to the transport details, the concrete operation methods
of the goods transfer process in transport company; the 4th layer is similar to the
interfacebetween transport company and customers; the 5th to 7th layers are
similar to the prepare work that the customer hands in goods to transport company.

66 Software Architecture

The first layer is physical layer. It is in charge of the transport of original bit
flow on the physical channels. It should provide the mechanical, electrical,
functional, and rule requirement for the building, maintenance and demolishment of
physical data link. This is similar to: the transport cars only need to pick up goods,
and transport them to the destination, but these cars do not need to know the
goods' detail, and how these goods are encapsulated.

The second layer is data link layer. Its main function is error correction and data
flowcontrol, to provide the errorless transfer on the physical layer that may suffer
form errors. It must build the data link between the adjacent nodes on the basis of
physical layer, provide frame's errorless transfer through the error control
mechanism, and control the data flow of each link. This is similar to the transport
management and quality supervise department, which must guaranty the finish of
task on the transport lines that may have some problems.

The third layer is network layer. Its main function is routing control, congestion
control and data package. It must provide building, maintenance, and cancellation of
network methods for the higher layer 's data transfer, divide data from higher layer
into packets, transfer them among nodes, and be in charge of the routing control and
congestion control. This is similar to" transport company need to divide goods into
many packages, find a line from the source address to destination in the current
traffic network. When finding the proper line, they must consider whether this line
can reach the goal address, whether this line is congested, whether this line is secure
and reliable, and how much the cost of this line would be, etc.

The above layers all belong to the details and concrete operation that the
transport company must be in charge of when goods are being transported. But the
4th layer is similar to the interface between Transport Company and customers.

The 4th layer is transport layer. It is an interface for its higher and lower layer.
It must provide the peer to peer (end user to end user), transparent, reliable data
transfer service for the higher layer. The so called transparent transfer is" when
communicating, higher layer can treat the lower layers as a close black system; the
transfer layer shields the transport sy s t em ' s details for the higher layer. This
characteristic is similar to: Transport Company often sets up the business contact
office in many places, these offices are in charge of building a bridge for goods'
handing over and taking over between customers and company, so that customers
need not to take care how the Transport Company transport these goods to
destination, that is to say, the business contact offices shield the goods transport
details from customers.

The 5th layer is session layer, its main function is in charge of the handover
work for data sending and receiving. In addition, it also organizes and manages data.
It must provide functions of building, maintenance and session cancellation for
representation layer, and provide session management service. This is similar to
Customer Company ' s mail room; it communicates with Transport Company,
finishes mail transition services, and then organizes the goods to be mailed in
Customer Company.

2 Architectural Styles and Patterns 67

The 6th layer is presentation layer. Its main function is providing the concrete
style and normal form for data ' s sending and receiving, It must provide the
information representation style for application layer, such as the exchange of data
patterns, the text compression and encryption technology. This is similar to person
who is in charge of goods' sending and receiving in the Customer Company. It
communicates with the department or person in the Customer Company who want
to send or receive goods. When gathering goods that are to be sent, he will tell
customers how to fill in the tables; when sending goods, he will tell customers what
must be done, etc.

The 7th layer is application layer. Its main function is to provide a variety of
mail patterns for data. It must provide a variety of application services for network
customers and applications, such as file transfer, e-mail, distributed database and
network management. This is similar to: when the inner departments or people in
the Customer Company want to mail something they must conform to the relative
rules in the Customer Company, and can only use the way in which the Customer
Company permits to mail goods. On the other aspect, Customer Company also
must provide a variety of mailing ways for its inner departments and people, so
that the departments and people in the Customer Company know which way they
can use to send or receive goods.

In the above paragraphs, we described the ISO/OSI hierarchy in detail. The ISO/
OSI network functions can be classified from two different aspects:

The first aspect is from the data process division, it can divide ISO/OSI 7
layers into 3 terms: the first and second layers solve the problems about network
channels; the third and fourth layers solve the problems of transfer services; and the
fifth, sixth and seventh layers deal with the visit to application process.

The second aspect is f rom the data transfer control, it divides ISO/OSI 7
layers into 3 terms: the lowest three layers (the first, second and third layer) can be
treated as transfer control term, this term is in charge of communication sub-
network, and it solves the problems of communication in network; the highest three
layers (the fifth, sixth and seventh layers) are in application control group. This
group is in charge of processes that are relative to resource sub-network, and solves
the information transformation problems between application processes; the middle
layer (the fourth layer) is the interface between communication sub-network and
resource sub-network, this layer is the bridge that connects transfer and application.

The Second term classification method is just mutually agreed with the goods
transport example. The transport control term is similar to the Transport
Company 's concrete details and operation style in the goods transport process; the
application control term is similar to Customer Company's preparing work for the
goods transportation; the interface in the middle layer (the 4th layer) is similar to
the interface between transport company and customers, generally, we call this
contact office sets in distinct places by Transport Company.

As readers know, the active webpage technologies develop quickly in nowadays,
and are used widely. In 2003, Microsoft published the Visual Studio 2003, one of its

68 Software Architecture

new products is asp Net. Using asp Net, developers can develop active desktop
quickly, and the process is pretty simple. In Microsoft ' s demos, the active website
is a system that includes several layers. Generally speaking, the system may include
web layer (also called representation layer), the business logic layer, and the data
access layer. Each layer has its own task, it provide service for the upper layer and
call the lower l ayer ' s function to implement its own function. This is just the
characteristics of layer architecture style. We will describe one of its demo called
Duwamish 7. 0. Through learning this example, users will know how layer
architecture style is widely used, and know how the layer architecture style~ s
theory is used in practical user cases. So, you may understand why in the book
"The art of software architecture", the author does not treat layer style as a
architecture layer, but an attribute of complicated system; you will also understand
why the author thinks you should not judge whether the system must be divided
into layers, but how the system should be divided into layers.

Duwamish Books Inc. is a virtual company that sells books on the internet. In
this virtual company the typical B2C pattern is current electronic commerce. The
basic information flows in B2C pattern are implemented, such as user login, account
management, category view, search, shopping cart, etc. Duwamish 7.0 provides
deep-rooted analysis and help for the developers who want to design, develop and
deploy the software product that based on NET technologies. Based on this system,
users may understand how to generate reliable, extensible and high performance
ap p licat ions.

In Duwamish 7.0, many new technologies are used, such as Windows XP server,
ASP NET, Web-based windows, Server controls, C # programming language,
Internet information service, ADO NET, etc. But in this example, we will not
introduce these technologies respectively. Instead, we will give an overview of the
whole sys tem 's layer, so as to make readers know how the layer architecture is
widely used in typical systems.

The main functions in Duwamish 7.0 include six modules. The first is category
overview. Users can search books by category. System provides 18 categories,
including, anthropology, art, biography, commerce, computer, etc. The second is
book search. Users can use dropdown list or other relative text boxes to search the
books they want. The key fields to search book include: book name, ISBN, authors,
and subject. The third is shopping cart. In the shopping cart, the books user has
already bought are shown. It also provides the function to modify the count of this
type of book for user. The fourth is user login. Before entering the account
management or clearing, users must login Duwamish 7.0 through email and password.
If one user has not registered new account, a "create new account" button is
provided to create a new account. The fifth is account management. System can
show u s e r ' s account information, and also permit users to modify the account
information. But, before modifying account information, users must first have
registered accounts and login the system. The sixth is order process. After choosing
books, users can make order and finish the transactions. In Duwamish 7.0, the whole

2 Architectural Styles and Patterns 69

sy stem is organized as Fig,2.18.

Classical Two-tier Three-tier
(,,,Presentation Layer) ~,_PresentationLayer) (Presentation Layer) (Presentation Layer)

(WorkflowLayer) (WorkflowLayer) (WorkflowLayer)

(Busi Logic Laye) ~usi Logic Laycr~

(Data Access Layer)

Process Boundary

N-tier
(Distributed three-tier)

Presentation
Tier

Process (Workflow Layer)
Boundary A Business Logic

V Tier
Process ~usiness Logic Laye) ~usiness Logic Laye~
Boundary I

, i
(Data AccessLayer) (Data AccessLayer) (Data AccessLayer) TierDataAccess

Fig. 2.18 The architecture structure of Duwamish 7.0

From this figure, we can see that the whole system is combined by four layers.
The first layer is web layer, it is also called client. It provides the access to
application, and is composed by web-based windows and corresponding code file.
The web-based windows only provide operations for users using HTML, and the
code file implements the event processes of controls that lay on the web-based
windows.

The second layer is called Business Facade. This layer provides interfaces for
accounts process, categories overview and buying books. The Business Facade layer
is in fact an isolate layer, it isolates the user interface and a variety of operations'
implementation. Besides the low level system and support function, all the calls to
database server are through this layer. That is to say, all the user commands are
processed by this l a y e r ' s program. And in this layer, all the functions are
implemented by calling the methods in Data Access layer.

The third layer is Business Rule layer. This layer is in charge of the
implementation of operation rules and operation logic. For example, the operation
rule will finish the tasks such as the validation of user account and book orders.
Why do the system designers abstract this layer from the second layer? Their goal
is to make the system more flexible. For instance, if customers want the designers to
evaluate this system so as to meet new requirements, we only need to modify the
Business Rule layer. But in some systems, the Business Rule layer is not an
independent layer. Readers must know, the more layer the system has, the more
flexible the system is, but the more complicated and lower performance at the
meantime.

The fourth layer is Data Access layer. This layer provides data services for
operation rule layer. For example, if the operation rule layer wants to search all the
books ordered by a certain user, it will call the methods in data access layer. Data

70 Software Architecture

access layer is the only layer that knows the tables' attributes and the entity
relationship of the whole database. Then data access layer will generate proper SQL,
and get returned value from database, or call the stored procedure. Database is
transparent for the other layers, so other layers can vary respectively as long as the
Data Access layer's interfaces are not modified.

I
Common
Layer

r
/

/
/

/

Web Layer

\
\

\
\

I

\
\

\

I
Business

Faqade Layer
/

/
/

/
/

Framework
Layer

i
t

Business
Rule Layer

i

- t I Data Access
Layer

Fig. 2.19 The package structure of Duwamish 7.0

Besides these four layers, there are two another special layers: the Common
layer and Framework layer. Why do we call Common layer a special layer? The
reason is: all other layers will use this layer 's classes. In fact, the Common layer do
not do any real work, it defines the entities and datasets that must be translated
between different layers. For example, in Duwamish 7.0, we must def'me User
entity, Book entity, Order entity, etc. The Framework layer has the information of
program's configuration and tracking. For example, if we want to make the Session
unable, we only need to modify the file "web.config" in the framework layer, but
not do other work in other layers. If we want to record errors when system is
running, we only need to modify the file that is in charge of recording logs. The
relationship between these layers can be described as Fig.2.19.

2.6 Data Sharing

2 .6 .1 Style Description

The data sharing style is also called repository style. When designed by this style,
system often has two distinct functional components: the first one is central data
unit component, it represents every state in the current system; the other is the set
of some relatively dependent components, these components can operate the central
data unit. In this case, the information exchange between central data unit (which is

2 Architectural Styles and Patterns 71

also called repository) and outer components set becomes the first pivotal problem
in the system that is based on data sharing style. Because of the differences of
functions the sys tem must implement, information exchange patterns are also
distinct from one another.

The differences of information exchange leads to the difference of control
strategy. Here are two main control strategies. Just because of the difference of the
control strategies, systems based on repository style can be divided into two sub-
classes. If a sys tem is driven by information services of input data flow, that is, the
input data flow' s information services can trigger the running of system' s according
process, this sys tem can be called application system based on traditional database
type repository style. On the other hand, if system is driven by current state of the
repository, that is, the system runs different processes according to the different
states in the current central data units, to response to state change of repository,
this system can be called the application system which is based on blackboard type
repository style. The blackboard type repository model is shown as Fig,2.20.

[k s l l [ks81

ks . I I. ' s7
Central data unit

(ks4) [ks5]

Fig. 2.20 Blackboard type repository style system

From the figure mentioned above, we can clearly find that, a typical blackboard
type repository style system is composed by three parts:

(1) Knowledge source. System that is based on repository style absolutely relies
on the change of repository states. In this case, the build of knowledge base, which
is also called knowledge source, becomes the first problem to be solved in system
design. In Fig,2.20, "ks" represents knowledge source, and is the main information
source in repository. These knowledge sources are all independent in logical and
physical aspects; they are only relative to the applications Which generate them.
The multiple data sources cooperate with each other through the coordination of
central data unit, they are transparent for outer environment.

(2) Central Data unit. Central data unit is the core component of the whole system, it
defines and analysis the problems that system must solve at first, then sun-amfizes the
multiple states that may appear when the system is rtmning, and design the ac~rding
procedure to deal with the desired states. Hence, the data in the central data unit is not
only pure data, but also represent some system status which belongs to status data. These
data are provided by data source, orgmaized together by some data structure style, and are

72 Software Architecture

modified by the change of data source infonmtion, so the functions of the system are
implermnted.

(3) Control unit. The drive of control unit is completely directed by the state
change of repository. The knowledge source inputs the information that system
must process into repository continually, this leads t o the state information
modification of knowledge; when the modification of states matches some
predef'med control strategies, the according control operations are triggered, so the
function control of system is implemented. From Fig,2.20, we can not find the
explicit representation of control unit, because the control unit is not a independent
unit in the system based on repository style, it can appear in the knowledge source
or repository, or exist independently as an independent component. Control unit
has no fixed style; designers must design it according to the concrete conditions.

2 . 6 . 2 Study Case

In this part, we will give the Expert System as example, to show the application
instance of repository style. A typical Expert System is a good application of data
sharing sty le.

Artificial Intelligence is one of the three most cutting-edge technologies in
current world, and Expert System is the most mature field in Artificial Intelligence
applications.j It combines with pattern recognition, intelligent robots, and becomes
the three most active fields in Artificial Intelligence technologies. We are proud to
say, repository is just the basis of Expert System, and Expert System is a perfect
instance of repository style. In fact, Expert System is a set of programs. From the
functional aspects, we can define it as "a program system that has the expert
problems solving ability in a certain fields." This system can work like fields
experts, using the fruitful experience and expert knowledge, giving high level solution
for a special problem in short time. From the structure aspects, we can define it as
"a problem solving program system composed by a special fields' knowledge base
and a component that can acquire and apply the according knowledge." The research
of Expert System creates a new subject, which is called knowledge engineering,
whose key research topic is knowledge acquisition, knowledge representation and
knowledge consequence.

Expert System works as follows: it acquires knowledge in a special field and the
experience that summarized by people in long time, imitates human experts'
thinking law and process patterns, using certain consequence mechanisms and
control strategies, to perform and reason by computer, so that the experiences of
expert become shared resource, and the difficulty of expert lack is overcome. The
core content of expert system is knowledge base and consequence mechanism. Its
main components includes: knowledge base, consequence machine, work database,
user interface, interpreter program and knowledge acquisition program. Expert
Sy stem' s general structure is shown as Fig,2.21.

In the following part, we will introduce the main components in ES in brief.
The first component is man-machine interface. Man-machine interface is the

2 Architectural Styles and Patterns 73

User

I

Interpret
structure

Database and its
Management system

l [Field expert I

Man-machine interface

Reason
machine

Knowledge acquisition
structure

Knowledge base and its
Management system

Fig. 2.21 The basic structure of ES

interface between expert system and field expert, knowledge engineer and general
users. It is composed by a set of program and the according hardware, and it
finishes the input and output work. Through man-machine interface, field expert or
knowledge engineer inputs, updates and perfects the knowledge base; through man-
machine interface, general users can input the problems to be solved or ask
questions to the expert system; system can output the operation result through the
man-machine interfaces, answer the questions or ask for further facts from users.

In the process of input and output, man-machine interfaces must change
information representation from inner style to outer style. For instance, when input
something, they may transform the field expert, knowledge engineer or general
users' input into sys t em ' s inner representation, then hand over them to different
structures; when output something they transform the inner representation into the
outer representation that is easy to understand, and show them to the according
users.

The second component is knowledge acquisition structure. This is the knowledge
acquisition structure in the expert system; it is composed by a set of programs.
Knowledge acquisition structure's basic task is to input knowledge into the
knowledge base, and guarantee the consistence and integration of knowledge. In
different systems, the function of system acquisition and its according
imp lement at ion methods are different. In some systems, the knowledge engineer first
acquires knowledge from expert, then inputs the knowledge into knowledge base
through some according knowledge edit software; some other systems have learning
ability themselves, and they acquire knowledge from fields expert directly, or
summarize new knowledge through the operation practice of system.

The third component is knowledge base and its management. Knowledge base is
the storage agency of knowledge, it is used to store the basic knowledge of fields,
the experience knowledge of expert, and some related facts, etc. The knowledge in
the knowledge base is from the knowledge acquisition structure, in the mean while, it

74 Software Architecture

provides the required knowledge for the reasoning machine. The knowledge base
management system is in charge of the organizing, searching and maintenance of
knowledge base. In expert systems, any departments must ask for the management
system if they want to communicate with knowledge base. In this way, the
knowledge base management system can implement the uniform management and
usage for knowledge base.

The fourth component is reasoning machine. Reasoning machine is the
"thinking" agency of expert system, which is the core part of the expert system.
The reasoning machine' s main task is to imitate the thinking process Of field expert,
control and operate the solving process of the desired problem. According to the
known facts, using the knowledge in the knowledge base, it can reason with a certain
reason method and control strategy, get the p r o b l e m ' s solution or prove the
correctness of a certain assuming,

The performance of the reasoning machine is relative to the knowledge
representation and or~niz at ion style, but has no relation to the knowledge' s
concrete content. This is helpful to guaranty the independence between reasoning
machine and knowledge base, that is to say, if there are some modifications in the
knowledge base, we need not to repair the reasoning machine. But a severe problem
we must face is, if the searching strategy of reasoning machine absolutely has no
relation to the field problem, system performance will decrease much, especially
when the scale of the field problem is extremely large, the problem may become a
disaster. To solve this problem, on one hand, expert system uses some inspiring
knowledge; on the other hand, it guaranties the independence of reasoning machine
and knowledge base, and uses meta knowledge to represent the inspiring knowledge.

The fifth component is database and its management system. Database is also
called "blackboard" or "integrated database", it is used to store the initial facts and
the results conducted by every step in the reasoning process. According to the
content in database, the reasoning machine chooses proper knowledge from the
knowledge base, arranges them, and then saves the conducted result into the
database. From this process, we can find that database is a work space that can not
lack in the reasoning machine, because it can record the detailed information in the
reasoning process, it provides the basis for the interpreter structure to answer
users' advisory. Database is managed by the database management system; this has
no essential difference with the database management in general program design, but
we must guaranty the consistence between data 's representation style and
knowledge' representation style.

The sixth component is interpreter structure. The interpreter structure is also
composed by a set of programs, and it can track and record the reasoning process.
When users ask for interpretation, it will process according to the requirement of
the problem, at last, it gives the interpreter answer to users through man-machine
interface using the agreed patterns. When constructing a real expert system, we must
not only consider these components, but also consider other additional components
according to the characteristics of the field problems. For instance, when

2 Architectural Styles and Patterns 75

constructing the decision making expert system, we must add decision model lib;
when constructing the expert that has complicated computing work, we must add
algorithm lib, and so on.

Submit to user]

Start

Problem submission]

[Search knowledge base I

I Acquire knowledge

Judge problem I

Search database]

Solve problem]

Interprer result]

[Finish]

Fig. 2 .22 The workflow of ES communication method

] Expert provision]

I

In the last part of this session, we will describe the communicating method of
expert system. Since knowledge base is the basis of expert system, in the
communication of expert system, the main process is the operation to knowledge
base controlled by reasoning machine. In the process of reasoning relied on
knowledge, it is possible that expert must control in real time, to modify and
complement the knowledge base. In the following part, we will use a simple instance
to describe this process. The main workflow is shown in Fig,2.22.

At first, users submit the problem that he wants to solve; then the man-machine
interface does the pretreatment work, so that reasoning machine can recognize the
problem description. Under the control of reasoning machine, the expert system
start searching the knowledge base, to require the desired knowledge K; if there is no
available knowledge, the acquisition to expert provision is interrupted; otherwise,
under the knowledge and reasoning rule, the reasoning machine judges the problem,
then start searching data in the database. Under the available knowledge and acquired
data, the reasoning machine solves the problem, gets the result R, then R is
interpreted by the interpret machine. At last, the interpreted result is handed in to
users through the man-machine interfaces.

In this process, the knowledge application of knowledge base is in all the phases,

76 Software Architecture

such as problem judgrnent, solving, and interpretation. The reasoning mechanism
does the real operation using knowledge. Control to knowledge base when
communicating is mainly implemented through the reasoning machine. At the same
time, knowledge base can dynamically adjust the reasoning machine' s content and
mechanism, so as to achieve the goal of continuing learning,

2 .7 Virtual Machine

2 .7 .1 Style Description

In some books, virtual machine style is also called interpreter; both virtual machine
and interpreter style refer to the same thing. We think because Java is a language
that uses interpreter to run the program, and Java has the characteristics of "Write
once, run everywhere", and the interpreter is also called virtual machine, the virtual
machine is equivalent to interpreter.

The core of system based on interpreter is the virtual machine. This type of
machine often includes the pseudo code that is to be interpreted and the interpreter
engine. Pseudo code is composed by the source code that must be interpreted and
the middle code is generated by the interpreter engine analysis; the interpreter
engine includes the syntax interpreter and the current state of the interpreter. So the
interpreter has four compositions: an interpreter engine that fmishes the interpreter
work; data store field that includes the pseudo code; a data structure that records
the current state of the interpreter engine; and a data structure that records the
progress of the interpreted source code. The relationship between them i sshown as
Fig,2.23.

Some authors think layer system is a type of virtual machine, because every
layer provides the interfaces to lower layer, The interpreter programs and rule-based
systems share characteristics that have common essence, because they all provide
semantic layer for some technology's top. The activation model of interpreter
program is based on the interpreter program engines that read and execute command.
In this mean, the interpreter engines activate every command.

Just similar to other architecture styles, the interpreter programs and rule
engines can combine with other architecture style. For instance, interpreter programs
can be activated when some certain rules or triggers are activated. An interpreter
program, such as workflow engine, can control the system states that bring the rule
to be triggered. The client and server components can be written using interpreter
program sty le.

The virtual machine style has many real applications. An enterprise software
developer often provides the application platforms based on virtual machine style,
but not a single application. This method permits the max flexibility, because
systems are customized by some certain program language or some user-defined
operation rule, but not through the static parameter ' s configurations. This flexibility

2 Architectural Styles and Patterns 77

storage district]

input] Source code to ~ interpreted
~--[be interpreted ~ ~ code

I Interpret work

output

I Data access work I

Fig. 2.23 Interpreter style

also brings the cost problem; interpreter program systems are hard to design and
test. You can not generate all the programs that are possible to be executed, so you
can not test your interpreter in your programs fully. In some systems, only part of
components are designed using interpreter program. For instance, a system can be
configured or customized using workflow component, this is a type of virtual
machine. Generally speaking, workflow language is not a universal language that has
limited and simple grammar. But at the end, customers can customize the
application' s process rule and model the operation process and rule. Any enterprise
application' s developer must provide virtual machine as part of the whole software
architecture.

2 . 7 . 2 Study Case

The interpreter s ty le ' s applications in pattern matching and language compiler
aspects are pretty mature in nowadays. We think it is boring and obscure to
statically describe the interpreter style system in theory, so we plan to describe a
Boolean expression interpreter, to analysis the running process of system based on
interpreter.

Boolean expression evaluation is a common problem in science computation. The
evaluation problem can be solved in many ways. In this part, we will take the
syntax searching match as the theory basis of Boolean expression evaluation, to
analysis and solve the expression evaluation problem from the syntax match
perspective.

If the occurrence of a special syntax match problem is high enough, it is
necessary to express the grammar of every instance as a language's sentence.
Through this method, we can construct an interpreter. This interpreter can solve the
syntax match problem through interpreting these sentences. The regular expression

78 Software Architecture

is the standard language to describe string, Compared with constructing a special
algorithm for every pattern, it is better to use a general search algorithm to
interpreter a regular expression, which def'mes the string set to be matched. The
operation result of the regular expression' s interpretation is the final result of the
Boolean exp ression.

In this instance, we describe how the interpreter-based system def'mes a
grammar for the simple language, how to represent a Boolean expression in this
language, how to interpret these expressions, and how the Boolean expression is
computed. If we use regular expression to describe this simple Boolean language,
then the content of this instance can be summarized as how to define a Boolean
expression for regular expression, how to represent a special Boolean regular
expression, how to interpret this regular expression, and how to get the result of the
Boolean expression.

If we use class in the object-oriented pattern to represent every grammar regular,
then the right side of the rule' s symbols is the instance variable of these grammar
rule class, and the grammar rule is represented by six classes: one abstract class
BooleanExpression and its five subclasses: AndExpression, OrExpression,
NotExpression, VariableExpression and Constant. The variable deffmed in the
subclasses represents the sub-expression. The abstract class and its subclass's
UML class diagram are shown as Fig,2.24.

~ BooleanExpression

�9 Replace()

AndExpression

�9 Evaluate()
�9 Replace()

NotExpression

�9 Evaluate()
�9 Replace()

Fig. 2 .24

h
N,

Variable Express ion

�9 Evaluate()
�9 Replace()

Constant

�9 Evaluate ()
�9 Replace()

Boolean expression evaluation system

OrExpression

�9 Evaluate()
�9 Replace()

Every regular expression defined by this grammar is represented as a abstract
grammar tree composed by instances of these classes, every node in this tree is an
object instantiated by one of the five subclasses. These nodes are organized together
similar to the binary t ree 's structure, forming the "interpret engine". For example,
if we meet this expression:

(true and x) or (y and (not x))

We can define a grammar tree as shown in Fig,2.25 according to the above grammar.
If we define an evaluate operation for every subclasses of BooleanExpression,

2 Architectural Styles and Patterns 79

~ OrExpressi0n 3

~ AndExpression ~ ~ AndExpression~

(ConstantTRU~ (VariableExpressi~ ~ IVariable~xpressi~ (N~176

Fig. 2.25 The instance of BooleanExpression abstract grammar tree

we can get an interpreter for these Boolean regular expressions. The interpreter
treats the context of this expression as a parameter. The context includes the input
Boolean expression and the information about the matched part of this Boolean
expression. This context can be viewed as the "inner state of the interpreter engine".
To match the following part of the Boolean expression so as to evaluate the value of
this expression, every subclass of the BooleanExpression must implement the
evaluate operation on the basis of the current context, these subclasses coordinate
with each other, forming the "interpi'eter engine" of the interpreter model in this
figure. For instance, the AndExpression will interpret and operate the "and"
operators; the OrExpression will interpret and operate the " o r " operators; the
NotExpression will interpret and operate the "not" operators in the BooleanExpression; the
VariableExpression and Constant will evaluate the variable and constant of the Boolean
Expression.

It is obvious that the systems based on interpreter style have typical advantages
and disadvantages:

(1) When the grammar rule is pretty simple, the interpreter will work well, but
things will go to the other end when the grammar rule become especially
complicated. The layers of the grammar will become large and hard to manage; the
system must include many classes that represent the grammar rules. In this case,
tools such as the grammar analysis program generator are a better choice. The
grammar analysis program generator needs not to construct abstract grammar tree,
nor to complete the interpretation of expression. It has advantages both ~n time and
space.

The most efficient interpreter is not implemented by directly interpreting
grammar analysis tree. It first transform,s, the grammar analysis tree into another
form. For instance, regular expression generally can be transformed into state
machine. Even in this case, the style of interpreter still can benefit much.

(2) The Boolean expression is easy to modify and extend grammar. Because
interpreter style uses class to represent grammar rule, users can use inheritance to
modify or extend grammar. The existed expressions can be extended by using
incremental style, and the new expression can be defined as the variant of the old
expression.

(3) It is easy to implement grammar. It is similar to def'me the class of every
node in the abstract grammar tree, and these classes are easy to write directly.

80 Software Architecture

Generally, they can be automatically generated by compiler or grammar analysis
generator. ~

In this part, we will describe the roles in the Boolean expression system.
Generally speaking, there are five roles in this type of system. The first one is
BooleanExpression. This role declares an abstract evaluate operation, this interface
is shared by all the nodes of the Boolean expression abstract grammar tree. The
second role is TerminalExpression (such as VariableExpression and Constant). This
type of role implements the evaluation operation in the BooleanExpression that are
related to terminals, every terminal in the Boolean Expression needs an object
instance of this class. The third role is NonterminalExpression (such as
AndExpression, OrExpression and NotExpression). Every rule in the Boolean
expression grammar needs an object instance of NonterminalExpression, and we
must maintain object instance of Boolean Expression for every symbol in every rule
in the Boolean expression grammar. We also need to implement the evaluate
operation for every NonterminalExpression in the ~ . In the NonterminalExpression
evaluate operation, we must call the evaluate operation for every symbol in the
grammar. The fourth role is context (this is "the inner state of interpreter engine").
It includes the global information besides the interpreter. The fifth role is client.
Client will constructs a special Boolean expression' s abstract grammar tree in the
Boolean expression~s definition, and this abstract grammar tree is composed by the
instance objects of TerminalExpression and NonterminalExpression. The client will
also call the evaluate operation.

The collaboration relationship between these five roles can be simply described
as follows:

At first, the client constructs a Boolean Expression, which is an abstract
grammar tree which is composed by instances of TerminalExpression and
NonterminalExpression. Then the client initiates the context and calls interpret
operation. Then every NonterminalExpression defines the evaluating operation of
the according expression, and all the evaluating operation of the expression forms
the basis of recursive evaluation. At last, the evaluating operation of every node
uses the context to store and access the states of interpreter system.

In this and the following part, we will introduce the implementation methods of
Boolean expression evaluation system. When encountering the real implementation
of Boolean expression, we have many details to deal with, and the process quality
of these details directly influences the whole sys tem's performance. These
problems mainly incarnate in the following aspects:

The first problem is to construct the abstract grammar tree. The interpreter
style does not specify how to construct an abstract grammar tree in detail, that is to
say, the interpreter style does not involve syntax analysis. But when we are
constructing an abstract grammar tree, we need to use a table-driven grammar
analysis program to finish this task; we can also use the recursive decline grammar
analysis program to construct the abstract grammar tree.

The second problem is how to define the evaluating operation. In fact, evaluating

2 Architectural Styles and Patterns 81

operation does not need to be defmed and implemented in the expression' s classes.
If we need construct a new interpreter frequently, we can use the Visitor style in
design pattern theory, put the evaluating operation in an independent "Visi tor"
object, this method may be better. For instance, a program design language has many
operations on abstract grammar tree, such as type check, code optimization and
code generation, etc. A proper way is to use a visitor, so as to avoid defining this
operation in every class.

The third problem is the shared terminals. In some grammars, many terminals
may occur in the same sentences (such as true and false in Boolean expression
evaluating system). In this case, it is better to share the copy of that symbol. The
terminal nodes usually do not store their positions in the grammar tree, in the
process of evaluation, any context information they required is transferred by their
parent nodes. So, the inner state and outer state in the terminal node are explicitly
different. We can implement those using Flyweight design patterns.

In the implementation of Boolean expression evaluation system, we define two
operations in the Boolean expression. The first operation is Evaluate, which evaluate
the value of the specified Boolean expression in the context, and this context must
provide " t rue" or "false" for every variable. The second operation is Replace,
which replaces a variable with an expression so as to generate new Boolean
expression. The Replace operation makes the system can not only finish the
evaluation of Boolean expression, but also do the grammar analysis of the Boolean
expression. Because of the manuscript length constraint, we will not describe the
implementation details of each subclasses.

The interpreter style has an important characteristic: we can use many
operations to "interpret" the same sentence. Among the three operations we defined
in the BooleanExpression, the evaluate operation is the basic operation in the
process of computing. Boolean Expression. It interprets a Boolean expression and
returns a simple result. But in the above system, we do not only have the evaluate
operation, the replace and copy can also be treated as interpreter, and the only
difference is the interpretation for the sentence.

2 . 8 Feedback Loop

2.8 .1 Style Description

The so-called object control means make the controlled objects (or the controlled
process), function or characteristics, reach the desired target. In this context,
"target" means the performance characteristics which meet the specified rule, or in
certain constraint, partly reach or approach the best one.

To design a control system successfully, we must know the controlled objects'
properties and characteristics. At the same time, we must know the variation of
these properties and characteristics with the modification of other factors such as

82 Software Architecture

environment. In the procedure of running, the controlled system can "recognize" or
master" the controlled object through measuring the characteristics of the

controlled objects, and make control strategy according to the current characteristics
of controlled objects that they have mastered, so that s y s t e m ' s performance can
reach the optimal condition or approach the optimal condition.

Control engineering is a specialized field that emphasizes methodology very
much; hence, the control engineering methods are absolutely independent of other
application fields. Although the problems they deal with are similar in essence, they
need not to be engineering problem; they may also be in non-engineering' s dynamic
systems, such as biology, economics, sociology and informatics. The feedback loop
style just borrows ideas from the kernel of process control system theory. It
indrafts the control theory into computer software architecture, analysis and
comprehends the functional components ' interaction from the process control
perspective, and applies them. To abstract the process control method from the
pure control field, we will introduce the concept of dynamic system in the following
part.

Dynamic system represents a functional unit that processes and transfers the
signals (for instance, signals can be energy, materials, information, fund, or other
forms). The causes are treated as sys tem's input, and the effects in time are treated
as sys tem ' s output. Systems that only have one input and one output are called
single variable system (such as measure organ, amplifier); systems that have multiple
input and multiple output are called multiple variable system (such as distillation
column, blast furnace); systems that have many layers are called hierarchical system.
The dynamic system is fit for all these three systems.

Systems that are defined in this way have common characteristics. There are
target 's function, information process, closed loop control process, open loop
control process, just as N. Wiener said, and the above concepts can all be
summarized by the advanced concept which is called cybernetics. The aim of
cybernetics is to recognize the common things of control process and information
process in nature, engineering technology and sociology, and applies these analysis
results to the integration of engineering system and improvement of nature system.
Of course, this can also be applied in the construction of software architecture.

2 . 8 . 2 Study Case

The systems based on feedback loop architecture style can process the complicated
adaptive problems; they are especially widely used in product line's automatic
control software. Most of the MES also use the feedback loop style. In this section,
we will give you a simple example to describe its basic characteristics.

Machine learning is an important search area in Artificial Intelligence; it is
concerned with the development of algorithms and techniques that allow computers
to "learn". At a general level, there are two types of learning: inductive and
deductive. Inductive machine learning methods create computer programs by
extracting rules and patterns out of massive data sets. It should be noted that a

2 Architectural Styles and Patterns 83

process employing pattern extraction should be categorized as data mining more
accurately.

Fig,2.26 shows the basic model of machine learning, At first step, the training
examples are input to the learning component, so that this component contains the
basic information to be queried. At second step, the real data can be inputted to get
result. After learning component's analysis and computation, the desired results are
outputted. But at the same time, the learning component will check the results '
invalidation, and then the check result will be fed back to learning component.
Through this loop, the learning ability of learning component is improved, the
knowledge in learning component is extended.

Training
examples

Real data

Learning
component

Feedback

I Resut !
"- checking

}1 Results
desired

Fig. 2.26 Machine learning model

2 . 9 Compar i son among Styles

Each architecture style has its own characteristics, advantages, disadvantages and
applications. In this part, we will give a comparison among seven architecture styles
from these four aspects.

The first is Pipes filters architecture style. Each functional component has a set
of input and output; the filters are independent, and have no necessity to
communicate with other filters; each filter reads data from its input interface,
processes these data, and then outputs them to the output interface. The Pipes
filters architecture style is easy to support reusability, easy to maintain and
evaluate, supports special analysis and concurrent. But at the same time, this type
of architecture style must process corporate data between two independent filters,
and has poor interactivity. This type of style is used in communication fields and
compiler sy stems.

The second style is object-oriented. In this type of style, data representation
and operations to these data are encapsulated; objects of class are in charge of their
integration. The methods' calls are considered to be connectors. For a certain object,
only its interface is known to its outer environment. The advantages of OO style

84 Software Architecture

are the high modularization, codeencapsulation, code sharing, easy maintenance, and
good extendibility. The disadvantages of OO style are: callers must know the
identification of called object' s method, when the identification of an object is
modified, it must notify all the objects that may call its method, which makes the
system have high coupling, OO style is widely used as long as the systems are
implemented by object-oriented programming languages such as Java and C# .

The third architecture style is event-driven architecture style. Systems based on
this type of architecture style are composed by many subsystems or elements. The
whole system has some certain goals, and works on the collaboration of message
mechanism. Among those subsystems, there is one dominate subsystem which is in
charge of the whole system' s running, Each element has event collection mechanism
and process mechanism. This type of style is easy to process the concurrent and
multiple tasks, and has good extendibility. Subsystems can be composed to form
more complicated management system; the customer code can be simplified. Just
opposite to Pipes filters style, event-driven style supports good interactivity. But
event-driven style has the following disadvantages: s y s t e m ' s computing control
ability is weak, hard to share data, and the logic between objects is complicated.
Generally speaking, the integrated developing environment can be considered as
event-driven.

The fourth architecture style is layer system. The whole system is decomposed
by many layers. Each layer provides services for the upper layer, and accepts
services from lower layer. This type of style supports graduate abstraction and
software reusability, and has good extendibility. But because of the graduate call of
methods, performance of the whole system is influenced. The typical layer system
is network protocol.

The fifth architecture style is data sharing, which is also called repository style.
Central data units are shared. It provides data access and store service for some
modular. The wholesystem has a control unit. This type of architecture style has
good extendibility of knowledge base, can solve special field problem, so this type
of architecture style is usually used in expert system such as language process and
pattern recognition.

The sixth is interpreter style. It has fixed structure, persuade code and
interpreter engine. The interpreter engine includes its definition and its operation
states. Systems based on this style can process the special field problems. The
typ ical application is compiler.

The seventh is feedback loop style. The most typical characteristics of feedback
loop are: the learning component, or the decision-maker component, can improve its
ability through learning and information updating, The typical application is MES
system.

From the comparison of these seven architecture styles, we can f'md a common
quality attribute in all these architecture styles: Good extendibility. In fact, by the
principle of software engineering, good software is always closed for change, and
open for extend. Software that is hard to extend is certainly not good one, so an

2 Architectural Styles and Patterns 85

architecture style that can not support system' s extendibility will not be popularized. Each
style has its certain e n v i r o ~ t to use; it tends to get a good quality attribute at the
cost of sacrificing other quality attributes. For instance, pipes filter style has bad
interactivky, while event-drivenstyle has good support to user interactivity; event-
driven style is hard to share comn~n data, while repository's rr~st typical advantage is
data sharing

2 . 1 0 Integrat ion of Heterogeneous Styles

After the detailed description of each architecture style, reader may have intuitive
and academic knowledge about software architecture style. But all the introduced
knowledge is introduced independently. As a matter of fact, all the architecture
styles not only have strong relationships, but also are used together in most cases.
For a practical system, you can not even judge it as A style, B style, or C style.
Classifying it to any single architecture style has no abundant reason. This type of
system can be called complicated system; the construction mode of this type of
system is called the integration of heterogeneous patterns.

Layered
system

Event-driven
~.,, command]

~ - ~ Active [I tasks l- ~ i

Pipes and filters / Pipes and filters
. . . . events ,,]

Flow control
explicit invocation
T

Service provided
objects

~(e" posiItor()

interpreter

Data need
tobe

interpreted][

f - -

State parameters
like which level
interprering is in

A
I

lnterprete~
(rules and| -Inte
tables) /

Current
Interpreting data

(po itor()

Fig. 2.27 A heterogeneous system model

"preted data---~-

Fig,2.27 shows the architecture of a virtual system that integrates many
architecture styles. The whole system can be treated as a layer system. In this case,

86 Software Architecture

it is divided into two layers: the first layer is the original data generation

component, and the second layer is an interpreter.
In first layer, the main component is pipes and filters. Data in first filter can be

sent to the second filter. When the second filter receives the data, it will generate
corresponding messages, and then sends them to event queue component and
service-provided objects component. While the event queue is not null, it will
activate the corresponding objects to process the events, so as to finish the tasks.
This part is a typical instance of event-driven architecture style.

When the service-provided component receives messages sent from the second
filter, it will record the message in repository, which is another important
component in the system. The repository component is just similar to the
blackboard in the data sharing architecture style. In this repository, all the
information, knowledge, and rules are recorded. When the "event-driven" part wants
to finish some tasks, it may need to query useful information from the repository,
then does correct action according to the rules. This part can be seen as a
combination of data sharing and feedback loop. Because all the data are shared in the
component repository, other components can access and retrieve data from it. Users
can update the repository by recording new data into the repository, so the
component also has the characteristics of feedback loop architecture style.

In the second layer, data from the first layer is interpreted. When interpreting
data, component must know the context, the rule and the state of the interpreting
machine, so there are state component, rule component and data component
respectively. All the errors and bugs generated when interpreting are recorded in the

repository. At last, the processed data are outputted.
From this example, we can see that a perfect system can be composed by a

variety of architecture style, depending on the requirement of each component in the
system, and the advantages of each architecture style. As we said earlier in this
chapter, architecture styles are just some common patterns that are widely used in
software engineering fields. They help developers to well understand the whole
system and the quality attributes. But we can not subject ourselves to the concrete
forms of each architecture style. The best system you have designed is not a syste m
that contains the "so called" architecture style, but the one where you use the
architecture style most properly, and the designed system which has the most

required quality attributes.

2.11 Summary

In this chapter, we first describe the fundamentals of software architecture style and
patterns. We know that architecture styles are large scale patterns which have been
used frequently, and achieve good quality attributes in some aspects. We also know
that these architecture styles are classified in different aspects. For instance, a
system not only can be classified into layer system if it is decomposed into several

2 Architectural Styles and Patterns 87

layers, but also can be classified into object-oriented style if data and operations are
encapsulated into classes. At last, we declare that almost no system has "pure"
architecture. That is to say, most large complicated systems are combinations of
different architecture styles, each of which can reach its own quality attributes. So
placing different style in their proper places will reach good system design quality
attributes, this is just the benefit of using architecture style.

Software design has three levels. The lowest level is programming level; this is
the most concrete level. In this level, we consider the structure of program such as
loop and condition branch, etc. This level is relative to programming language. The
second level is design patterns. In some components, we may use abstract factory
pattern, or singleton pattern, etc. These patterns will help us to make the special
component have better extendibility, or reach good quality attributes. This level is
transparent to programming language. The highest level is software architecture.
This level considers the organization of the whole system, which can make the
whole system have high performance, good extendibility, or some special quality
attributes according to their special requirement. After reading this chapter, readers
have to know the abstraction level of architecture style and its usability.

We describe the characteristics of each style, and give plenty of examples to
show the application of that style. At the end of this chapter, we compare these
styles from four aspects: architecture style's characteristics, advantages, disadvantages and
applications. We f'md these styles all have good extendibility. Besides, each style
can reach its special quality attributes at the cost of sacrificing some other quality
attributes. The best way to achieve the benefit of software architecture style is to
use each of them in designed sys t em ' s most proper places; this is the topic of
integration of heterogeneous patterns, at this part, we give a virtual system that
uses many architecture styles as illustrating example.

We do not list all architecture styles in this chapter. As a matter of fact, we are
impossible to list all of them, because they describe systems from different
perspectives and have special quality attributes, especially in some.special domain
application fields. In our opinion, readers should not put theft main time in
remembering the described architecture style; they should understand the
relationship between qualities attributes and the corresponding architecture styles;
they also should comprehend the reflection from activate model to architecture
style. The design thoughts are most important for each of architecture style. Only
when you know what should do to reach your requirement, such as high
performance, good data sharing, good data encapsulation, and how to implement
your ideas through using proper architecture style, the goal of this chapter is

reached.

References

(Albin, 2003) Albin, S. T. The Art of Software Architecture: Design Methods and

88 Software Architecture

Techniques, John Wiley & Sons.2003.
(Giarratano, 2005) Giarratano, J. C. & Riley, G. D. Expert Systems Principles and

Programming 4th ed." Course Technology.2005.
(Shaw, 1996) Shaw, M. & Garlan, D. Software Architecture: Perspectives on an

Emerging Discip line, Prentice Hall. 1996.

Application and Analysis of Architectural Styles

3 . 1 In t roduct ion to SMCSP

3.1 .1 Program Background

In recent years, mobile e-commerce and e-government have an enormous market
prospects. With mobile users' continual increase, business of data transmission via
mobile equipment has multiplied, users have brought up higher requirement on how
to obtain a more direct and convenient e-commerce/e-government information and
services. Furthermore, the speedy development of mobile e-commerce causes further
strong demand of mobile collaborative business (government); how to construct
mobile collaborative commerce (government) platform has become a challenging
issue.

In the past phase, the traditional collaborative technology has been introduced to
the field of mobile computing, Such integration formed a mobile collaborative
technique, which caused great concern of the universities, research institutions and
corporations such as Microsoft, Oracle, IBM, Nokia, Motorola and so on. Mobile
Cooperation/Collaboration concept originated from the contribution of Mark
Weriser who presented the possibilities of wireless communications and interaction
in the office environment using portable mobile equipments. The first industrial
application, the Mobile CSCW (Computing Support Collaboration Work) system, is
the MOST multimedia collaboration system developed by British Lancaster
University in 1995. In 1998, two scholars of Cambridge University--P. Luff and C.
Heath presented the necessity of mobility support as CSCW system researchers.

Microsoft, Oracle, IBM, Nokia, Motorola and other companies or research
organizations focused on the enterprise application which are applying traditional
CSCW to the mobile computing environment; research institutions such as CMU,
Brunel, Cambridge mainly focus on audio and video collaborative process,
collaboration data transmission in wireless network, and so on. In China, Tsinghua

90 Software Architecture

University, Shanghai Jiaotong University are also in the stage concerning theoretical
study and laboratory research without application system.

The core of mobile e-commerce application system is a platform supporting
mobile collaboration services. The platform consists of mobile communications
equipment and intemet; it is an e-commerce system which can facilitate both mobile
service providers and mobile equipment users. Mobile communications equipment
and SMCSP, SMCSP and service agents provided by mobile services providers
communicate based on TCP/IP protocol. After mobile users register to SMCSP,
they can subscribe the needed service (the service must have been registered to
SMCSP). In addition, the platform also processes some collaborative tasks.

Mobile collaboration is the use of mobile computing technology and traditional
collaboration techniques to make a group of members to work together for a
common goal and also maximum interest of groups. The main issues of mobile
collaboration includes: support for mobile collaboration, dynamic configuration,
service independency, support for multiple types of network protocols, system
platform independency and extensibility and so on. Employing multiple mobile
agents framework is one of the effective ways to solve these issues. The concept of
mobile agent is brought up by General Magic Corp. in its commercial system in the
early 1990s; it is a new generation of key technologies of distribution following
CORBA, EJB.

Mobile agent is a procedure which can move independently from a host to
another host in heterogeneous networks, and exchange resource with other agents. It
actually combines agent technology and distributed computing technology. By
mobile agent technology the service-request agent dynamically moves to the server
for implementation, so that the agent depends less on the transmission of network

and directly faces the server resources; thus the large amount of data transmission
network is avoided and network bandwidth dependence is reduced. Mobile agent
does not require unified scheduling; an agent created by the user can run
asynchronously in different nodes, and transmit results to the users after tasks are
completed. In order to complete a certain task, users can create a number of agents;
those agents run in one or more nodes at the same time, which forms capacity of
parallel computing,

MMAS(Multiple Mobile Agent System) faces many problems of which the
most crucial one is collaboration between agents. Multiple agent collaboration is
necessary because of resource and time constraints and it can make multiple agents
correspond to solve the problem. The collaboration is a key conception
distinguishing the agent systems between other related areas such as distributed
computing, object-oriented technology and expert systems.

MMAS mainly aims to make knowledge, desire, intention, planning of multiple
agents correspond to achieve mobile collaboration. Combining mobile agent
technology with collaboration technology is an effective way to solve the issue of
mobile collaboration.

SMCSP is a mobile collaboration application framework supporting third-parties

3 Application and Analysis'of Architectural Styles 91

service employing mobile collaboration technology. The main issues of SMCSP are:
�9 knowledge framework presentation of mobile collaboration users (members),

tasks and actions
�9 mobile resource discovery mechanisms
�9 computing resource scheduling and computing movement mechanism
�9 mobile network instability handling mechanism
�9 remote control of collaboration users' state at mobile state
�9 multiple groups (users) real-time collaboration mechanism
�9 mobile network congestion and protocol optimization handling
�9 mobile security mechanisms
�9 common problems in mobile collaboration .
�9 openness, system platform independency and application independency
�9 dynamic configuration

3 . 1 . 2 Technica l Routes

Distributed structure based on multiple mobile agents

According to the functional requirements and mobile agent technology features, we
established the MMAS distributed structure, as illustrated in Fig~3.1.

Fig. 3.1 MMAS distributed structure

There are many service agencies collaborating with each others. When agents
need collaboration services, such service agencies can offer to complete collaboration
business.

Logical design based on layered model

The system employs a multiple mixture structure which combines layered model,
knowledge base model and object-oriented model. We employ different layered
strategies according to different application occasions. Each layer of the system is
developed to solve a specified issue in SMCSP, which makes problems localized and
simplified. It is to implement integration of the whole system by employing good
reusability, extensibility of layered architecture. The whole system is divided into

92 Software Architecture

five layers, as illustrated in Fig,3.2.

Fig. 3.2 The layered structure of the system

With the support of SMCSP, application layer completes service collaboration via
mobile net. The mobile collaboration layer is the core of the platform, which completes
the discovery, scheduling, collaboration and movement of resource. Furthermore, reliable
infrastructure provides effective security support for the platform; optimized TCP/IP
protocol provides effective improvement mechanism to ease network congestion;
application layer presents the application function of by mobile police, entertainment,
stock and other concrete mobile applications.

SMCSP is a mobile collaboration application framework for third parties
constructed by mobile collaboration technology. Hence, the platform needs to
establish a knowledge presentation framework to describe collaboration members
and mutual relationships. In order to develop such a platform, we need to master
scheduling and movement technology, resource discovery technology, business
collaboration technology and so on.

The pivotal issues of mobile collaboration framework includes dynamic multiple
mixture structure, establishment of mobile collaboration knowledge framework and
relative knowledge visible system. The mobile collaboration technology mainly
includes movement mechanism and resource discovery mechanism and so on.

Assuppor t ing foundation of collaboration platform, security mechanism is
achieved by design and realization of a special mobile encryption card. Based on the
card, we analyze and realize a two-stage-handshake improved SSL protocol.

3 Application and Analysis of Architectural Styles 93

Dataflow description
(1)Registration Information of agents
(2)Request information of users
(3)Result information
(4)System monitoring information
(5)Process result
(6)Collaboration Process
(7)Interaction information of system agents
(8)Database flow

Direct bi-direction information flow

............ Indirect bi-direction information flow

............ Indirect Encrypted information flow

Agent Registration Information flow

Fig. 3.3 The function design for platform at logic lever

3 . 1 . 3 Function Design

The Function Design for Platform at Logic Lever

The entire sys t em consists of three par t s - -c l ien ts , media network, SMCSP.

S M C S P ' s main components are:

�9 AMS (A g e n t Management System): AM S manages and monitors all the

a ~ n t s running state in the system. A M S manages, the transition of agent

runtime states such as registration, deregistration, monitoring, inquiring,

94 Software Architecture

running~
�9 DF (Directory Facilitator): DF manages functions of all agents in the

system, and handles registration, deregistration, inquiring of agent functions
and the communication with the other agents.

�9 Knowledge Management Agent: manages all the original knowledge and
field knowledge involved by the whole system. It handles maintenance,
description, transition, exchange and limited updating of knowledge to
support the adaptive system configuration.

�9 Platform Monitoring Agent: manages maintenance of agents running state
to support movement of codes.

�9 Inferring Agent: offers relative inferring support during working process of
collaboration groups, and enlarges inferring rules.

�9 Graph Agent: responsible for access to the pictures information required by
the related services.

�9 User Message Agent: receives and analyzes the messages sent from users,
then invokes function agents to solve the messages and retums relative result
to users.

�9 User Information Agent: handles registration request, certification request
from mobile equipment terminal users, and manages the list of user' s services
and the list of online users.

�9 Service Message Agent. waits for request messages sent for User Message
Agent and service agent, and invokes service agent to respond the messages
and returns results.

�9 Service Information Agent: handles requests from mobile service providers
such as registration, service information modification and so on. It also
manages basic information of services, and manages the list of registered
services and online services at the platform.

The client mainly includes:
�9 User Agent: completes display and handles user response by embedding in

the mobile nodes.
�9 Communication Server: handles communication with all agents and

accomplishes the functions of AM S and DF.
Personalized service subscription module: is responsible for the maintenance of

the list of the services subscribed by users.
Authentication Module: in order to improve the integrity of the application

system, it provides authentication function aiming to the mobile nodes.
Encryption module: in order to improve the integrity of application systems, it

provides the reliable transmission of confidential information between mobile nodes
and the services terminal.

The functional design for platform application

With the support of relative libraries and subsystems, SMCSP has three major
types of application functions:

3 Application and Analysis of Architectural Styles 95

Fig. 3.4 The function design for platform application

�9 Plat form management
Exceptions handling in the running process of platform, exceptions and

unpredictable mistakes will affect the functions of entire platform. Facing
exceptional mistakes or paralysis of partial functions, exceptions handling agent
assures that the whole system continue to serve the users and the providers.
Exceptions handling agent can provide a detailed report about exceptional mistakes,
and may restore some functions to ensure the system robustness.

Critical resource discovery: In order to support various mobile services including
mobile collaboration services, the platform needs to discover and support the third-
party services. When mobile users concern and need some services, the platform can
discover these services, and optimize quality and accessing speed of these services.

96 Software Architecture

Task handling, analyzes and schedules various complex tasks. With the support
of knowledge agent, inferring agent, and various mobile collaboration libraries
including knowledge base, inferring base and visual model base, processing on
complex tasks becomes more reasonable. Such reasonable processing also depends on
optimized collaboration scheduling and movement strategy.

�9 Operation support
Services registration certification: manages the relative services at the platform.

Only if a service provided by the service provider meets certain platform
specifications and interface standards, can the service become part of the system.
Services registration to the platform is necessary; the service could be provided to
mobile users after the successful registration. In the circumstances when upgrading
is needed, platform also handles the unregistration request of agents. Because of its
openness, the system can also support recovery after service agents work
except ionally.

Customer registration certification: after mobile terminal client registers
successfully and logs in, mobile users can use all the services registered to the
platform, supported by the platform, owned by providers. The platform also
handles unregistration request submitted by mobile clients.

Service flow monitoring, as service providers are different, the service agents
vary at sizes and other characteristics greatly. In order to support services provided
by all the providers, the platform monitors the service flow and ignores concrete
function distinguishing, Such monitoring includes establishment o f services
information base and resources base

�9 Data Maintenance
Real-time information collection and storage: during the runtime, the platform

monitors information flow, various collaboration task scheduling and analysis
information flow, collaboration work information, various agent service information
flow, requests information flow from all kinds of mobile terminal clients, services
agent state information flow, experienced knowledge data flow, exception
information and relative handling,

The monitoring for various information flows can facilitate the management of
the platform and relevant optimization; the information will be collected, processed
and stored as platform running log files.

Service information maintenance: platform can support various types of services,
nonetheless, services provided by different providers have their own dependent
features. Those dependent features make it more complicated to maintain services
information.

In order to assure the service quality, the maintenance is critical for mobile
collaboration.

Customer information storage: there are two main kinds of client information: (1)
basic customer information includes customer card number, account, age and the list
of subscribed services. (2) real-time customer information includes user online
information, network linking state, location information and relevant collaboration

3 Application and Analysis of Architectural Styles 97

information.
In conclusion, SMCSP is developed to serve mobile services providers and

mobile users. All the function design concentrates its specified clients. The
implementation of those functions cannot go on well without relevant information
libraries and other needed libraries.

3 . 2 System Realization

3 . 2 . 1 The Pattern Choice

About SMCSP, we have introduced the background, various designs based on
different perspectives, also the key technologies. Now we focus on the concrete
system realization. As we know, SMCSP works as a foundation services platform
for both mobile clients and mobile services providers. Briefly speaking" mobile
providers register their services to the platform, and then mobile clients can query
and access the registered Services via the platform. In fact, such mobile business can
simply be implemented without the media platform. That means mobile providers
can directly provide their services to mobile clients while mobile clients directly
access the providers to obtain needed services. Employing client-server pattern is
also adequate to solve above business application. Why do we use the client-server-
provider model instead of client-server pattern? We will present the reasons during
the following discussion.

Client/Server pattern

Client/Server pattern takes important part in information industry. Network
Computing has experienced such evolution from the computing model based on host
to client /server computing model.

After the 1980s, centralized structure has gradually been replaced by
microcomputer network consisting of personal computers. Usage of personal
computers and workstations changes the collaboration computing model. Distributed
personal computing model emerges for such reasons. From one hand, the inherent
defections of mainframes, such as lack of flexibility, makes it difficult to
accommodate the sharp increase of information and to provide complete solution for
enterprises. On the second hand, rapid development of microprocessor, its powerful
processing capability and comparatively low price also promotes development of
network. User can choose workstation, operation system and application program
according to what they need.

Client/Server software architecture emerges for realization of resource share
based on unequal resource. C/S architecture defines the linkage of workstations and
server to realize the distribution of data and application programs .to multiple
computers. C/S model is a classical model in software architecture and a common
example for teaching, The most architecture description languages will illustrate how
to describe a C/S model as a basic example, which we will introduce in Chapter 4.

98 Software Architecture

The structure of C/S architecture is shown roughly in Fig.3.5. The linkages represent

that client submits the request and then server makes response and returns relevant

results.

Fig. 3.5 C/S model

In fact, the structure of C/S is more complicated than that shown in Fig.3.6. In

general, three main parts in C/S architecture are database server, client application

program and network.

Fig. 3.6 The architecture of C/S structure

The server manages resource of the system, whose main tasks are:

�9 to assure the security of database

�9 to control the concurrent access to database

�9 to ensure the consistency of data

�9 to make data duplication and recovery

The main tasks of client application program are:

�9 to provide GUI (Graphic User Interface) for users

�9 to submit u s e r ' s requests to database server and receive message and

response from database server

�9 to execute logic processing on data from database in fat client model

The data transmission is completed by network communication mechanism in fat

client and thin server model in order to reduce the burden on the server. Hence,

client executes logical processing and analyses of data; the data flow of such model

3 Application and Analysis of Architectural Styles 99

is shown in Fig,3.7.

Input Data]Request Submit[

I Output Data I

SQL Request End I

[SQLRequest End]

.~ Transaction Begin]

--~ DataAccess Request I ~

[Wran~actio. Find I

Transaction Begin I

~[DataAccess Request I

] TransactionEna I

J

Fig. 3.7 Handling process in C/S architecture

The advantages of C/S architecture are dominant. The most significant one is
adaptability and flexibility brought by def'mite isolation of function components. In
deed, C/S architecture owns powerful capability of data operation and transaction
processing. The concept of C/S model is simple and intuitive for engineers to
understand and utilize. However, C/S also has following defects:

�9 The develop expense is comparatively higher. C/S architecture o f client
hardware and software configuration sets higher requirements on client software and
hardware configuration. Continuous upgrading of software and hardware definitely
raises the cost of the system.

�9 The program design of clients is complicated. Program design of client
accounts for a very large proportion of software development based on C/S model.

�9 Software maintenance and upgrading is more difficult. Clients need to be
upgraded to assure synchronization with the server.

�9 It is not easy to take new technology, because we cannot change a software
development environment casually.

Client/platform/provider pattern

In addition to those reasons (defects) mentioned above, there are some other reasons
to support that C/S architecture is not suitable for such a mobile application.

�9 mobile communication defect
Compared with general networks, wireless network is more instable. Hence, the

100 Software Architecture

efficiency of direct communications of providers and mobile clients is low and
dissatisfying, Customers cannot enjoy better services and are dissatisfied with
mobile services providers because of the own defections of wireless network.
Service providers definitely do not want to see such a situation. Adopting the
mobile platform as an intermediate is effective to alleviate the existing problems of
mobile communications.

�9 Services management and services integration
As we know, there are numerous mobile service providers in the mobile service

markets. Each provider specifies its own service standards and interfaces. If a
mobile client directly accesses the services provided by various mobile providers,
the client needs all of service standards and interfaces specified by different
providers.

Fig. 3.8 Provider and Client
_

As shown in Fig,3.8, a client already takes service from providers A and B, then
the user needs services from C, then it has to reload interfaces specified by C.
Otherwise, the C service will not be able to run in the client. What if the provider E
or F comes?

Even if the number of service providers is limited, but the large amount of
services also cause confusions. So, the above mechanism will cause high cost and be
inefficient. In our design concept, the mobile platform provides relatively unified
standards and interfaces to mobile clients and service providers. Based on this
unified foundation, service providers register their services to the platform; then
mobile clients will visit the platform to complete the service browse, service
subscription and service access with the help of platform service integration. The
measures greatly improve the integration efficiency of service and facilitate large
amounts of mobile users.

�9 Mobile collaboration
In addition to the two reasons above, there is a key reason for employing Client/

3 Application and Analysis of Architectural Styles 101

Platform/Provider architecture. The platform realizes mobile collaboration, which we
emphasized in introduction to background.

Mobile collaboration is the use of mobile computing technology and traditional
collaboration techniques to make a group of members to work together for a
common goal and also maximum interest of groups, which can not be realized by
simple client-server architecture. We have introduced the research history of mobile
collaboration, its significance in such a mobile application, and several relative issues
in background introduction. In the following section, we will focus on how mobile
collaboration is achieved.

Service
Usage

Client j ~

Service
Registration

-~ Platform i~ -~ rovide

}

Fig. 3.9 CPP model

The CPP architecture is roughly shown in Fig.3.9.
Client: Mobile client also provides the same function with representation layer

(application user interfaces) and completes dialogue function between users and
application. In addition to GUI, it completes the communication between client and
the service platform. The client is responsible for submitting users' request and
accepting the return massage from service platforms, subscribing services provided
by platform according to user' s need.

Platform: The platform is responsible for service integration and service
management, and provides a unified interfaces and service standards. The platform
manages service registration, information query on registered service, service
subscriptions, service access and so on. The platform also maintains the
relationships between service providers and their service, and the relationships
between clients and their subscriptions.

Provider: Mobile service providers develop various mobile services and register
their services to platform according to platform standard.

Simply speaking, the linkage between platform and mobile clients represents
service usage, while the linkage between platform and service providers represents
service registration. Of course, the actual deployment of mobile clients and
providers is much more complicated. Fig,3.10 shows a simple network deployment
situation.

After the introduction to roles of this application system, we focus on
interaction mechanism and implementation of mobile collaboration, which are
important realization mechanism to build the mobile platform.

3 . 2 . 2 Interaction Mechanism

The SMCSP system specifies own message class for communication. The detailed
design M essageClass and M essageQueue are depicted as following:.

102 Software Architecture

Fig. 3 .10 The architecture of CPP structure

�9 M essageClass: M essageClass defines the f o r m a t t e d message sent and received

in this p rogram.

�9 P roper t i e s

No. Variable Type Description Comment
1 StrRecv String The original received string null
2 Service String Service name null
3 Sender String Message Sender null
4 receiver String Message Receiver null
5 content String Message Content null
6 seperator char Seperator of message string static public

No.

�9 M e t h o d s

Methods

M essageClass

getSender

getReceiver

getAction

getContent

Parameter
Type

Void

Void

Void

Void

Void

Return '
Type

Void

String

String

String

String

Description

Construction function. To analyze
original message string,

To get sender info. from analyzed
message string,
To get receiver info. from
analyzed message string,

To get service info. from analyzed
message string,
To get message content from
analyzed message string,

Comment

public

public

public

public

public

3 Application and Analysis of Architectural Styles 103

�9 M essageQueue: M essageQueue class manages message queue in the program.

�9 Proper t ies

No. Variable Type Description Comment

1 vector Vector The vector for messages storage and access, private

�9 M e t h o d s

No. M et hods

clearAll

get

put

M essageQueue

Parameter
Type

void

void

MessageClass

void

Return
Type

void

M essageClass

void

void

Description

To clear the message
queue.

To get a message from the
message queue.
To put a message into the
message queue.

To initialize a new vector.

Comment

public

public

public

public

The p l a t fo rm and client respec t ive ly define their own message l istener class to

realize communicat ion, e m p l o y i n g socket and mul t i threading mechanisms. Take

p l a t fo rm as an example, the detailed design is depicted as fol lows:

�9 Cl ientLis tening: T h e class l istens on clients.

�9 Proper t ies

No.

1

2

Variable Type Description Comment

ss Serversocket Message storage vector, private

mf MainFrame Program mainframe, null

No.

�9 M e t h o d s

Met hods

ClientListening

run

Parameter Return
Description

Type Type

ServerSocket ss, void
MainFrame mf

Construction function.

void void Listening function.

Comment

public

public

�9 C l i e n t : T h e class p rocesses the messages sent from mobi le clients.

�9 Prop erties

No. Variable Type Description Comment

1 s Socket Message storage vector, private

2 mf MainFrame Program mainframe, null

3 mq M essageQueue [] Message queue for management, null

4 br BufferedReader Input message stream reader, null

5 dos DataOutputStream Output message stream, null

104 Software Architecture

�9 Methods

No. Methods

Client

r u n

registe

logjnCheck

chooseService

Return
Parameter Type

Type

ServerSocket ss,
void

MainFrame mf

void

String name,
String password

String name,
String password

String usemame,
String service

void

void

Description

Construction function.

To transfer massage by
realizing Runable interface.

To handle user registration.

To check for login and to
void

send services list.

To handle users ' service
void

choices.

Comment

public

public

public

public

public

The run method codes are shown as follows. When a new client connects to the

service p la t form, run method will call the funct ions o f Mainframe to record visit

information, and then build a new thread. The new thread will make a new instance

o f Client, which will handle the logic p rocess ing o f information.

public void run() {

while (true) {

Socket s = null;

try{

s ---- ss. accept() ;

)

catch (IOException ex) {

)

String ip = s. getInetAddress(), toString() ;

mf. GetClientPanel(). AddLine("Mobile client" ~- ip ~- "is connecting to the

server") ;

mf. GetClient2Panel(). AddLine("Mobile client" ~- ip ~- "is connecting to the

server") ;

new Thread(new Client(s, mf)). start() ;

}

3 . 2 . 3 Realization of Mobile Collaboration

People built abstract model and divided it into a number of modules to handle in
order to solve more complex real problem�9 If the domain of a particular problem is
very huge, complex and unpredictable, the only appropriate and reasonable
approach to solve such problem is to develop lots of components with specified
function�9 And each component is designed to solve a specific area of this problem.
For this collaboration reliable service system, employing multi-agent technology to
describe and analyze system is the best option.

The decomposition of mobile service system makes each agent take most

3 Application and Analysis of Architectural Styles 105

appropriate pattern to solve specific problems. An agent has to collaborate with the
other agents in the system to solve interdependent problems. How to assure high-
efficient and dynamic information sharing and collaboration is the core issue of
mobile collaboration. In order to achieve high-efficient and dynamic information
sharing and collaboration, we adopt mobile agent technology to conduct effective
information exchange.

Mobile agent is a procedure which can move independently from a host to
another host in heterogeneous networks, and exchange resource with other agents. It
actually combines agent technology and distributed computing technology. By
mobile agent technology the service-request agent dynamically moves to the server
for implementation, so that the agent depends less on the transmission of network
and directly faces the server resources; thus the large amount of data transmission
network is avoided and network bandwidth dependence is reduced. Mobile agent
does not require unified scheduling; an agent created by the user can run
asynchronously in different nodes, and transmit results to the users after tasks are
completed. In order to complete a certain task, users can create a number of agents;
those agents run in one or more nodes at the same time, which forms capacity of
parallel computing,

In the process of collaboration, the aggnt completes its own job; the collaboration
action must meet the following criteria: (1) Agents should mutually respond. (2) All
agents should make commitment on its own decomposed job. (3) All agents should
support the common action among each others to achieve the whole aim. (4) Each
agent should be able to meet specific environmental constraints.

Mobile collaboration of this platform is reflected in three collaboration layers:
�9 Supporting collaboration
In this platform, multi-agent coordination can be communication and management

over layers, can also be interactive communications among the inter-regional
equipment or different services. Hence, we have established an ontology structure to
describe the agent itself and its own attributes. The structure alsospecifies agent
interactive communication, the constraint properties of non-communication action,
the content and aim of actions.

�9 Members collaboration
Members collaboration refers to the collaborations between users.
We build an ontology structure to describe various mobile users, including users'

location, mobile properties, personal information, activities and service records and
other information, to support a variety of application services. Meanwhile, the
ontology structure can also describe the interaction action. Hence, different terminal
users can share knowledge, completed various complex interaction. This design
approach is the best design based on mobile ontology and the mobile user~ s actual
application. The mobile users autonomously collaborate to realize decomposition of
services, service scheduling, interaction and so on.

�9 Organization collaboration
Org0niz at ion collaboration refers to the division, distribution, sub-task coordination,

106 Software Architecture

collaboration rules ~ t of collaboration tasks.
Typical Agent software architecture: Agent software architecture describes

Agent functional modules and collaboration action. According to the characteristics
of the Agent, software architecture should include following basic modules: (1) User
interface for user to input information or output information to users. (2)
Communication interface for communication with other software agent or
application. (3) Perception module to process filtering and classification on input
information. (4) Reasoning module to infer based on their own knowledge of Agent.
(5) Decision module to do evaluation of the inferring results and decision-making"
(6) Plan module to make action plan based on the decision-making,
(7) Implementation module to act in accordance with the action plan. (8) Knowledge
base to support reasoning, decision-making, planning and so on.

Mobile Agent Design Specification: OMG ~s MASIF specification standardizes
agent management, agent movement, agent name, agent system name, agent system
type and location syntax. Such a specification makes some basic recommendations
to resolve interoperability between different agent systems of different
manufacturers.

Interoperability is the basic characteristics of different agent systems ~
coordination. When an agent application runs at a node of the net, it can utilize data,
processing capability and similar resources at other nodes.

Function summary

The main function modules are as follows:
�9 Interface agent or personal assistants
Its main task is to assist users to complete tedious and repetitive work. Agent

will observe and monitor users how to perform some specific tasks. When such
agent can identify the reaction of users in specific circumstances, it begins to replace
or to help users to complete tasks. These agents have been personalized according
to targeted users to adapt to the specific users ~ behavior. These issues are closely
related with human-machine interface (HCI), user modeling and pattern matching,

�9 Task Agent
Task Agent is to help mankind to process complex decision-making and other

knowledge management. The work principle of these agents is based on computer
learning, planning, resource-constrained reasoning, knowledge expression in artificial

intelligence.
�9 Information/Internet Agent
It supports users in distributed network or Internet to search information oi"

intelligently manages network resources.
Now we describe the system functions according to the three aspects mentioned

above:
SMCSP is the core of the whole design. Its function is to publish the service,

which mobile service provider provides to the platform according to the standard of
mobile computing visualization platform, to internet; then mobile users can choose
and enjoy their favorite service expediently. Service providers only need to provide

3 Application and Analysis of Architectural Styles 107

calculating subsystem with independent function in accordance with the

requirements and standards of the platform. Hence, the service provider is not

concerned about how users to access the services. In other words, the platform

plays a role of intermediary between service users and providers.
We can divide the platform into two parts from the function aspect:

f -,

Application
Side

J

Client r Server Side

J

Fig. 3.11 The interior modules of platform

_- Service Computing
Module

�9 App lication Side
It mainly manages users ' information and interacts with users. Application side

has four main modules; we will present the function analyses in details as follows.

�9 User Management Module.
�9 Mobile equipment users have to be registered as legitimate users before

accessing the services. When a user requests to registration, the mobile

equipment terminal submits the related information (such as user ID,

personal information and so on), processes request of user management

module, and then returns the registration result to the user (such as

random user password.)
�9 When a mobile user requests to deregistration, the module cancels all

personal information about the user and updates the database. Finally

the module returns the deregistration result to the user.
�9 When a mobile user requests to logjn, the module checks the u s e r ' s

identity and returns the login result.
�9 When a mobile user requests to update the list of personal services (for

example, to delete the selected services or to add new services), the

process approach is more complicated accordingly.
We have to know that there is also a personal service list in mobile terminal

equipment. If the user wants to delete selected service, user can directly choose the
service and make delete demand. The personal service list in mobile equipment will

be updated while the service list in application side will be updated. If the user
wants to add a service, the platform will send the system-registered service list to

the user. The user picks up a service and submits the relevant request, then the

service lists both in client and in application side will be updated.

There are some comments worth noting.
All the user request information is obtained through communication module A,

108 Software Architecture

meanwhile the retum of the results is also completed through communications

module A.
The registered service lists are consistent in application side and the service side.

The maintenance of the online service list is completed by core controlling modules.

If the registered list changes, the list of online services must also change, because the
number of online services is less than that of registered services.

�9 Application Communication module A. It manages the communication
between application side and mobile terminal equipment.

�9 The module receives the request sent by mobile terminal equipment. The

module will redirect the request message concerning user management to
the user management module. The remaining requests are all service
requests. The module will return request-failed information, if the

service is temporarily unavailable.
�9 The module will classify the available requests and manage the requests

queue and then transfer the request to communication module B
according to dynamic transfer scheduling rules.

�9 The module receives the computing result of service from the
communication module B and then returns the result to mobile terminal
equipment. If the request is handled successfully, the module retums
computing results, otherwise the module returns failing information.

�9 Application Communications module B. The module manages the
communications between application side and server side.

�9 The module receives the users ' request sent from communication
module A, and transfers the request to server side.

�9 The module receives the service request results from server side and
directly transfers the results to communication module A.

In a word, comna~cation module B works as a transformation for requests and results.
�9 Core control module.

�9 Core control module is responsible for collaboration of several other
modules. The modules at application side will send normal signal to the
core control module. When all the modules work normally, the core
control module stays in monitor state. When exception emerges in a
certain module, it is responsible for the exception handling:,

�9 The module receives updating message of the service list from core
control module at server side.

�9 Database management module.
�9 The module updates the database according to the requirements of the

other modules. It also manages the access to the database.
�9 The module manages the rule database. The rule database here makes

inference about type of calculation according to the amonats of
calculation tasks and service requests.

�9 Server Side
The server side mainly manages services and interacts with service computing

3 Application and Analysis of Architectural Styles 109

module. Server side has five main modules; we will present the function analyses in
details as follows.

�9 Service management module
* When a service provider applies for registration of new services, the

service computing module will offer such an application and then
submit to the server relevant content (such as service content,

communication atomic word, message format).
�9 Service management module obtains requests such as service registration,

service unregistration and service pause from the server communication

module B.
Service management module will handle such requests as following
approaches: if the service management module receives service
registration request, it returns the registration result (such as service
number or communication port number); if the service management
module receives service deregistration requests, it callbacks
communication resources allocated to the service, returns the results and
meanwhile notifies the core control module to deal with the
deregistration; if the service management module receives service pause
request, it only notifies the core control module to deal with such

request.
�9 The management module also monitors the real-time states of service

computing modules. During the running of the system, the management
module updates the online service list according the real-time state. If
any exception occurs in service computing modules, the management
module will notify the core control module to recover.

�9 Service communication module A .It manages the communication between

application side and server side.
�9 The module receives the request sent from application side. According

to the online service list, it returns request failing message if the service
is temporarily unavailable. The module will handle the rest requests
according to computing rules and redirect them to server communication

module B.
�9 The module receives the service computing result from the server

communication module B and then returns the result to mobile terminal
equipment. If the request is handled successfully, the module returns
computing results, otherwise the module returns failing information.

�9 Server communication module B. The module manages the communications

between server side and service computing module.
�9 The module receives the request sent from server communication module

A, and transfers the request to server computing if the requested service

is available.
�9 The module receives the result from service computing module.

�9 The module redirects the message from computing modules (such as

110 Software Architecture

service registration, service deregistration and service pause) to the
service management module.

In a word, communication module B works as a transformation for requests and
results.

�9 Server core control module.
�9 Server core control module is responsible for collaboration of several

other modules. The modules at server side will send normal signal to the
core control module. When all the modules work normally, the core
control module stays in monitor state. When exception emerges in a
certain module, it is responsible for the exception handling.

�9 The module receives updating message of the service list from service
management modules.

�9 The module updates the registered services list and online services list.
The module adds the newly-registered service into the registered service
list and removes the unregistered service from the registered service list.

�9 The module sends the updating message to the application core control
module.

�9 Database management module.
�9 The module updates the database according to the requirements of the

other modules. It also manages the access to the database.
�9 The module manages the rules database. The rule database here makes

inference about type of calculation according to the amonats of
calculation tasks and service requests.

The Whole framework

In order to support mobile equipments produced by different manufacturers and
various services provided by providers, the SMCSP needs a unified standard for
interoperability. Here we employ MASIF standards. We build the system on such
basis; meanwhile we have to ensure the flexibility of the system. The platform
employs the Java technology because of Java platform's independence, operating
sy st em~ s independence.

The core composing parts of the platform collaboration mechanism:
�9 Computer Supporting Collaboration Work Environment : The distributed

computing environment, adopting computer technology, network and
communication technologies, multimedia technology and human-machine
interface technology, organizes the collaboration members to complete the
certain task.

�9 Collaboration Supporting Agent: The agent coordinates the cooperation of
mobile collaboration group consisting of mobile clients and other agents. The
agent realizes the mobile clients collaboration, the arrangement of service
decomp osit ion, service scheduling, and interact ion.

�9 AMS (Agent Management System): AM S manages and monitors all the
agents ~ running states in the system. AMS manages the transition of agent
runtime states, such as registration, unregistration, monitoring, inquiring,

3 Application and Analysis of Architectural Styles 111

External
Interoperability

Interface

f

I CApplicatiOn ~ I ommunication [
Agent .J

~c Server "1 I ommunication I
Agent .J

\

Computer Supporting
Collaboration Work
Environment

Business
Supporting

Agent

Collaboration') I
Management 1

Agent J

1 a ~176 1 l Supporting ~ DF
Agent

Knowledge 1 Management ~ AMS
Agent

J

I"
Fig. 3.12 Multi-agent collaboration structures

running,
�9 DF (Directory Facil itator): DF manages functions of all agents in the

system, and handles registration, unregistration, inquiring of agent functions
and the communication with the other agents.

�9 ACC (Agent Communication Channel) : Agent Communication Channel
manages all the communication between the agents. It provides all kinds of
transmission services needed by communication.

�9 External Interoperability Interface. We have mentioned that interoperability is
the basic characteristics of different agent systems' coordination. When an
agent application runs at a node of the net, it even can utilize data, processing
capability and similar resources at other nodes.

Multi-agent system platform provides an operating system indecent platform
for the entire application system. The platform is distributed on the networks,
therefore there is not restriction on physical location of the agent in the system.
Once a machine of the platform collapses, the running agent can immediately move
to other machines to ensure service continuity and consistency. The system can
adjust the machine load to remain the balance, efficiency and security of the system
according to the system' s real-time state.

3 . 2 . 4 Knowledge-based Design

After we introduce the collaboration realization of the platform, we present the
knowledge-based design of the police service server. The knowledge-based design is
closely related to expert system. As we know, both expert system and multi-agent
system are hot issues in artificial intelligence (AI).

During the 20th century, a number of def'mitions of artificial intelligence were

proposed. The earliest popular definition of AI is "making computers think like
people". Fig,3.13 shows some areas of interest for AI. The area of expert systems is
a very successful and approximate solution to the classic AI problem of
programming intelligence.

112 Software Architecture

Fig. 3.13 Research areas of AI

Expert systems have been combined with databases for human-like pattern
recognition and automated decision systems to yield knowledge discovery through
data mining and thus produce an intelligent database (Bramer, 1999). Professor
Edward Feigenbaum has defined an expert system as "an intelligent computer
program that uses knowledge and inference procedures to solve problems that are
difficult enough to require significant human expertise for their solution".

There are a number of advantages of expert systems, such as increased
availability, reduced cost, reduced danger, better performance, increased reliability,
fast response and so on.

The design of the police service server is just a simple implementation of
knowledge-based system. Through our introduction to this simple design, we may
understand the design concept of knowledge-based system. In fact, the terms expert
system, knowledge-based system, and knowledge-based expert system are often
used synonymously. Most people use expert system simply because i t ' s shorter,
even though there may be no expertise in their expert system, only knowledge.

A knowledge-based system consists of the following components (Giarratano,
2005) which are shown in Fig,3.14:

�9 User interface: the mechanism by which the user and the knowledge-based
sy stem communicate.

�9 Explanation facility: explains the reasoning of the system to a user.
�9 Working memory: a global database of facts used by the rules.
�9 Inference engine: makes inferences by deciding which rules are satisfied by

facts or objects, prioritizes the satisfied rules, and executes the rule with the
highest priority.

3 Application and Analysis of Architectural Styles 113

Knowledge base[
(rules) l

Inference engine

agenda

Working memory
(facts)

!

Explanation facility [Knowledge acquisition

I facility

U ser interface

Fig. 3.14 Knowledge-based system structure

�9 Agenda: a prioritized list of rules created by the inference engine, whose
patterns are satisfied by facts or objects in working memory.

�9 Knowledge acquisition facility: an automatic way for the user to enter
knowledge in the system rather than by having the knowledge engineer
explicitly code the knowledge.

Our police service is still in the phase of concept. The service includes city map
collection services, case information collection, and police collaboration control; and
the server of the police service manages the distribution of police force. The server
will maintain a list of spare staff and a tree of occupied polices. When the server
receives the warning, it handles the police scheduling according to the relevant rules
and current situation of the police force (the list and the tree). After the handling of
the warning, the server will move the police staff from the occupied tree to the list.
In such a simple implementation, the knowledge base is the rules for police force
scheduling and the facts are the current situation of the police force.

Knowledge base
(rules)

Inference engine Working memory
(facts)

Fig. 3.15 The inference mechanism of police service server

114 Software Architecture

The following code shows the process after the warning handling

private void handleFinish(gtring[] message, Socket socket) {

/ / T o record event information into the database of performance analysis
DBA writetoperfdb : new DBA ("update performancehistory set typepercentage :-

typepercentage~- 1 ", "update") ;

Thread twritetoperfdb---- new Thread(writetoperfdb) ;

twritetoperfdb, start() ;

try {

twritetoperfdb, join() ;
>

catch (InterruptedException ex2) {

}

/ / T o record the collaboration completed information into the database
/ / T o notify the client to leave from the collaboration group
String userName : message[l] ;

DBA missionComplete -- new DBA (" update coproject set finished : I where

teamname-- (select teamname from proj_member where name:'" ~- userName ~- "'and

leader:" I')", "update") ;

Thread tmissionComplete : new Thread(missionComplete) ;

tmissionComplete, start() ;

try <
tmissionComplete, join() ;

}
catch (InterruptedException ex) {

}

/ / T o Notify the user end of the task.
s e n d M e s s a g e (" H i s s i o n C o m p l e t e " , s o c k e t , 5 0 0 0) ;

/ / T o Move the police staff from the occupied tree to the list.
DBA teamMem : new DBA(" select teamname, name from proj_member where teamname:

(select teamname from proj_member where name --'" ~- userName ~- "" and leader :"

I')", "select");

Thread tteamMem :- new Thread(teamMem) ;

tteamMem, start() ;

try {

tteamMem, join() ;

ResultSet teamMemrs ---- (ResultSet) teamMem, returnrecords() ;

String tn : new String();

Vector membname-- new Vector() ;

int memb : 0;

while (teamMemrs. next()) {

tn -- teamMemrs, getString(" teamname") ;

arena, freePol iceName, addEl ement (teamMemrs, getStr ing("name")) ;

memb~- ~- ;
}

/ / T o remove the node (police staff) from the occupied tree.
for (int i ---- 0; i ~ arena, rootnode, getChildCount() ; i~-~-) {

if (arena. rootnode, getChildAt(i), toString(), equals(tn))
<

((myTreeNode)arena. rootnode, getChildAt (i)). removeAllChildren() ;

3 Application and Analysis of Architectural Styles 1 1 5

>
>

if(((myTreeNode) arena, rootnode, getChildAt (i)). getChildCount () -- ----0)

((myTreeNode) arena, rootnode), remove(i) ;
}

DefaultTreeModemodel: (DefaultTreeModel)arena. coEventTree, getModel();

model, reload();

arena, coEventTree, repaint();

/ / To add the node(police staff) in to the list.
arena, freePoliceCounter - - arena, freePoliceCounter ~- memb;

arena, freePolice ---- new JCheckBox[arena. freePoliceCounter];

String~] fpn ---- new String~arena. freePoliceName, capacity()];

arena, freePoliceName, copyInto(fpn);

arena, freePolicePanel, removeAll();

arena, freePoliceScrollPane, repaint();

for (int j ---- 0; j < arena, freePoliceCounter; j~-q-) {

arena, freePolice[j] = new JCheckBox(....);

arena, freePolice~j].setText(fpn~j]);

arena, freePolicePanel, add(arena, freePolice~j], null);
}

arena, setVisible(true) ;
}

catch (Exception exl) {

exl.printStackTrace();
}

} //End handleFinish

3 . 3 S u m m a r y

This chapter concerns on the supporting mobile collaboration service platform
(SMCSP); we employ such a mobile collaboration platform as a study case to
present a further introduction to software architecture style. The mobile
collaboration platform is a new application in the field of the mobile communication
field; we introduce the program background, technology route and function design in
details to present an explicit description concerning such an application.

We compare the C/S pattern with CPP pattern, and discuss the reason for our
application to employ the CPP architecture. Furthermore, we present the
communication mechanism and the module design for mobile collaboration.
Eventually we make a simple introduction of knowledge-based system and the
relevant application in our police service server. We hope that the content of this
chapter could be a supplement to Chapter 2.

116 Software Architecture

References

(Bramer, 1999) Bramer, M. A., Ed. Knowledge Discovery and Data Mining: IEEE
Press. 1999.

(Giarratano, 2005) Giarratano, J. C. & Riley, G. D. Expert Systems Principles and
Programm/ng 4th ed." Course Technology.2005.

Software Architecture Description

As the size and complexity of software systems increases, design problems go
beyond the algorithms and data structures of the computation: designing and
specifying the overall system structure emerges as a new kind of problem. Such
change is inevitable in order to ensure software quality and to improve reliability,
reusability and maintainability of software. The new concept of design focuses on
the overall organization of software systems, processing the internal relationship
between system components at a higher level, and understanding and analyzing the
system behavior and characteristics from global perspective.

We have discussed why we need software architecture in Chapter 1; we have
known what software architecture can bring to us: inchoate analysis and evaluation
of sys t em ' s quality, constraints to sys t em ' s implementation, the reuse and the
realization of software product line, facilitation for the communication among
stakeholders and so on. All the advantages are just what we need to solve the
difficulties in development of large and complex software.

Although we know the trend of software development and seize the potential
last straw, there is an additional problem we have tO face. How to describe a system
with the concept of software architecture? In other words, how we make
architectural description and ensure that it can contribute to the system
development? In this chapter, we present the formal description of software, and
focus on architectural description languages(ADL), the conception of which is based
on formal methods. Among numerous ADLs, we choose to present a primer
introduction to WRIGHT, an architectural description language development at
Carnegie Mellon University.. At the very first step, we should understand the
necessity of formal language.

4 .1 Formal Description of Software Architecture

4 . 1 . 1 Problems in Informal Description

Many developments of software systems start from architecture design, which is

118 Software Architecture

particularly necessary for large-scale systems. And good design for software
architecture is often a key factor leading to software success.

The concept of object-oriented development (OOD)has gradually matured from
being presented. The OOD can still be regarded as one of the mainstream
development models. Obviously we have approaches to describe software
architecture according to such concept. As we know, in software engineering, the
famous Unified Modeling Language (UML) (Booch, 2005) is a non-proprietary
specification language based on the concept of OOD for object modeling. The UML
is an effort to create a standard, generic, graphical modeling language for software
systems, As a general-purpose modeling language, UML includes a standardized
graphical notation used to create an abstract model of a system, referred to as a
UML model. ~

A software designer can describe the system architecture employing UML and
kinds of models. What is the description like in UML? What kinds of models can be
used to describe a system to be developed? Generally there are three prominent
p arts of a sy stem~ s model:

Functional model showcases the functionality of the system from the u s e r ' s
Point of View, including Use Case Diagrams.

Object model showcases the structure and substructure of the system using
objects, attributes, operations, and associations, including Class Diagrams.

Dynamic model showcases the intemal behavior of the system, including
Sequence Diagrams, Activity Diagrams and State Machine Diagrams.

UML is a common typical informal description approach. We will focus on the
functional model of the three models as topic, n a m e l y t h e use case diagram and
model; we discuss deficiencies of informal methods accordingly.

Before the discussion, let us go through some informal definitions: Actors,
Scenarios and Use cases. An actor is something with behavior, such as a person
(identified by role), computer system, or organization. A scenario is a specific
sequence of actions and interactions between actors and the system; it is also called
a use case instance. It is one particular story of using a system, or one path through
the use case. Informally, a use case is a collection of related success and failure
scenarios that describe an actor using a system to support a goal. (Larman, 2004)

The UML provides use case diagram notation to illustrate the names of use
cases and actors, and the relationships between them, and system boundary
optionally. (Larman, 2004) The relationships include Communicate Associations,
Dependencies, Generalizations. (Alhir, 2003)

We do not introduce UML specifications in detais here,just present a simple
use case diagram and a use case specification to illustrate our points of view.

In fact, with few exceptions current exploitation of software architecture and
architectural style is informal. However, informal methods do not facilitate the
communication and understanding of software. As shown in Fig. 4. 1, informal
methods (e.g. UML) for analysis and design always make heavy use of natural
language and a variety of graphical notations. The result is that depending on natural

4 Software Architecture Description 119

use Case 1- play Monopoly Game

Scope: M o n o p o l y app l i ca t i on

Level: user goal

Primary Actor: O b s e r v e r

Stakeholders and interests:

- Observer:Wants to easily observe the output o f the game simulat ion

Main success scenario:

1. Observer requests new game initialization, enters number of players

2. Observer starts play

3. A),stem displays game trace lor next pla),er move(see domain rules, and
"game trace" in glossarv h~r trace details)

Repeat step 3 until a winner or Observer cancels

Extensions:

*a. At any t ime,System fail

(To support recovery, System logs after each completed move)

1. Observer restart System

2. System detects prior failure, reconstructs state, and prompts to
continue

3. Observer choose to continue(from last completed player turn)

Special Requirements:

Fig. 4.1 A sample of use case diagram and specification

language and informal graphical notations directly cause the difficulty of
characterizing an explicit, independent architecture or architectural style. Such defect
limits the extent to which software architecture can be exploited using current
practices. Hence, we discuss deficiencies of non-formal approaches in describing
system architecture as follows:

�9 Vagueness
Vagueness often occurs because a system specification is a very bulky

document. Achieving a high level of precision consistently is an almost impossible
task. (Pressman, 2006) Fundamentally speaking~ vagueness is caused by ambiguity of
natural languages. Meanwhile some graphic notations containing only a small amount
of structural information will not completely eliminate the existence of ambiguity.
Naturally, employing graphic notations are also limited by the expression capability
of graphic symbols. In a word, informal methods cannot describe a system
precisely.

�9 Barriers during communication caused by vagueness
Basically, the era of individual heroism has gone in the software industry.

Nowadays, development of large software system requires collaboration of a whole
team. Of course teamwork brings communication, which is an important part of
team collaboration and a key factor affecting the result of development. As we
mentioned before, informal approaches cause vagueness in architecture description.
And such vagueness will make barriers during communication for certain.

�9 Infeasibility in System Validation
A system designer might hope that the architecture can be validated in the first

120 Software Architecture

design phase. Validation means to check out the consistency and completeness of a
system, that is, whether the system as the description will work correctly. Likely
an architect need to make sure the building in design can be turned into practice. In
architecture, mathematics and physical mechanics can help architects to complete
such validation. However, in software engineering, informal language for architecture
description can not be used to validate a system. Even the natural languages and
graphic notation are unambiguous, and express the designer 's intention precisely,
and also contain enough design information; less conducive to the machinery
expression and computing, and the lack of the mathematical theory supporting
analysis and computation make validation infeasible. Since we can not find out the
contradictions-variances in sets of statements (Pressman, 2006), and incompleteness
or the other defects, we are not able to ensure the quality of software products. And
the system may encounter fatal errors eventually.

�9 Weakness in Architectural Behavior Description
In fact, architectural behavior description not only declares the functions of the

s y s t e m ' s modules and the communications between different modules, but also
serves the validation. Hence, behavior description is very significant part of
architectural description. Although informal methods, such as Sequence Diagrams,
Activity Diagrams of UML, can describe the internal behavior of the system, the
deficiencies still exist: (1)vagueness blocks the accurate expression of behavior
design; (2) behavior can not be predicted according to computation; (3) the informal
approaches are unable to express the dynamic behavior interaction in run-time. In
that situation, we will suffer from inconsistency of interface communication
protocols or even the deadlock problems. And those deficiencies in behavior
description are also reasons for infeasibility in system validation.

The deficiencies of informal approaches do exist and are inevitable indeed.
Nonetheless, can formal description help software architect to get rid of those
deficiencies on earth?

4 . 1 . 2 Why Are Formal Methods Necessary

In this section, we try to answer the question raised at the final of the previous
section. In computer science, formal methods refer to mathematically based
techniques for the specification, development and verification of software and
hardware systems. In other words, the formalism foundation is based on
mathematical theories.

Formal methods can be applied at various points through the development
process. Especially formal methods have the following advantages in architectural
description:

�9 Formal methods may be used to give a description of the system to be
developed, at whatever level(s) of details desired.

By providing a precise semantics for the system at the abstract level of
architecture, a formal model of the system can provide the basis for rigorous,
justifiable analysis of critical System properties. That is, applying general formal

4 Software Architecture Description 121

methods makes modeling and analyzing of architectures and architectural styles
achievable. As we know, mathematic is the most accurate language. Unambiguous
mathematic notation and operational rules will be of extinct vagueness. Software
designers can precisely express their own concept and system requirements. In the
development phase, to eliminate ambiguity, all development work will be in
accordance with the design based on the mathematical theory. And all the developers
will work or discuss with the guidance of formal methods, namely according to the
only standards and interpret rules. Hence, the barriers during communication caused
by vagueness will disappear.

�9 The formal methods have more advantages in architectural behavior
description.

Compared with informal methods, the major advantages are as follows: (1) the
methods are conducive to machinery expression and computation. (2) The methods
provide formal and exact definitions to describe behaviors or behavior patterns, as
well as behavior analysis and modeling rules. For example, process algebras provide
algebraic laws which allow process (behavior pattern) descriptions to be
manipulated and analyzed, and permit formal reasoning about equivalences between
processes. (3) Such analysis and modeling of behavior is an important part of
sy stem validation.

�9 The formal methods make system validation feasible.
As we discussed above, the perfect supporting for behavior description

contributes to system validation. Additionally, a formal model of the architecture
can also be used as a basis for verification of an implementation. Because the
constraints that must be met by a system are precisely defined, it i spossible to
determine whether a system conforms to an architecture and whether a given
architecture conforms to a style. The constraints themselves can be validated for
consistency.

With the theory of formal methods, proofs of correctness of such. systems
(validation) can be processed by automated means. Generally, automated techniques
fall into two general categories:

�9 Automated theorem proving, in which a system attempts to produce a formal
proof from scratch, given a description of the system, a set of logical axioms, and a
set of inference rules.

�9 Model checking, in which a system verifies certain properties by means of
an exhaustive search of all possible states that a system could enter during its
execution.

Based on these features above, formal approach is especially important in high-
integrity systems, for example where safety or security is important, to help ensure
that errors are not introduced into the development process. Formal methods are
particularly effective in early development at the requirements and specification
levels, and can be used for a completely formal development of an implementation.

After thirty years of research and application, community has gained lots of
significant achievements in the area of formal methods: the methods derived from

122 Software Architecture

initially the most simple method--the first-order predicate logic, evolve to several
categories applied to different areas, including logic-based methods, the state
machine, network, process algebra, algebra and other formal approaches. Of those
categories, here are some famous formal methods,

�9 P e t r i Net
A Petri net (also known as a place/transition net or P/T net) is one of several

mathematical representations of discretely distributed systems. As a modeling
language, it graphically depicts the structure of a distributed system as a directed
bipartite graph with annotations. As such, a Petri net has place nodes, transition
nodes, and directed arcs connecting places with transitions. Petri nets were invented
in 1962 by Carl Adam Petri in his PhD thesis. (Petri, 1962)

�9 Z Notation
The Z notation (universally pronounced zed, named after Zermelo-Fr/~nkel set

theory) is a formal specification language used for describing and modeling
computing systems. It is targeted at the clear specification of computer programs
and the formulation of proofs about the intended program behavior. It was originally
proposed by Jean-Raymond Abrial in 1977 with the help of Steve Schuman and
Bertrand M ey er. (Abrial, 1980)

Other methods also include Actor model (Hewitt, 1973), B-Method (Abrial,
1996), CSP (Hoare, 2004), VDM (Fitzgerald, 1973) and so on.

The formal methods can overcome some deficiencies in architectural description.
Nonetheless, we have to admit that formal methods do have their own limitation,
which is inevitable anyway. Although formal methods have their position in
software engineering and relative fields, compared with object-oriented technology,
formal methods still do not arouse the interest of software industry (except some
certain fields). Generally, it is believed that the current problems of formal methods
are mainly" (1)The diversity between specification and actual code is still great
because program coding is mostly completed via manual way. (2) Limited by the
characteristics of themselves, formal methods are difficult to be integrated into"
software development process smoothly.

The controversy conceming formal methods exists and will last, but formal
methods have shown outstanding technical capability. As a kind of successful
guidance, they are also necessary methods for describing software architecture. Note
that formal methods are only mathematical theories and lack of expression of
system structure for architectural description. Without topology information of
software system, mathematic theory could only act as a tool. And such tools can be
used in any fields and confuse our understanding, Hence, we need a tie to combine
the concept of formal methods and software architecture. For such consideration, we
have another approach to supporting architectural description and analysis through
Architecture Description Languages (ADLs).

4 Software Architecture Description 123

4 . 2 Architectural Description Language

4 . 2 . 1 Introduction to ADL

As we mentioned at the last of the previous section, Architectural Description
Language is a viable option for architectural description. That is, to support
architecture-based development, formal modeling notations and analysis and
development tools that operate on architectural specifications are needed. ADLs and
their accompanying toolsets have been proposed as one feasible answer
(Medvidovic, 2000). Hence, in this section, we present a shallow insight to the field
of ADL.

Informally, an ADL is a computer language used to describe software and
system architecture. This rough definition still emphasizes the purpose of ADL and
lack of some necessary specifications. We positively hope to check up a dictionary
to find out the precise definition for ADL. Unfortunately, there is still little
consensus in the research community on what an ADL is, what aspects of an
architecture should be modeled by an ADL, and what should be interchanged in an
interchange language. (Medvidovic, 2000) Furthermore, the situation about little
consensus has not improved in the recent years. Along with the increase and
development of ADL family, such academic debates have got expanded gradually; to
reach consensus on the definition has become increasingly difficult.

Based on our understanding, we recognize that an ADL is a kind of language for
description; it can be employed to describe software architecture on specified
abstract level. It usually has formal syntax and semantics, and strictly predefmed
notations for expression; or simple, understandable and intuitive and abstract
expression. The former can provide designers with powerful analysis tools, model
checkers, parsers, compilers, code synthesis tools, runtime support tools, and so on
based on formalism; the latter provide those kinds of tools that aid visualization,
understandingo and simple analyses of architectural descriptions employing graphical
symbols. Most of ADLs can analyze and validate system description relying on
formal methods; however, some ADLs only have syntax and semantic concerning
structure, and complete formal description and analysis combining other ADLs. The
latter kind is regarded as interchange languages, andwe accept that such interchanges
are also ADLs. Regreting that we have not proposed accurately and shortly on the
ADL definition, we use a whole paragraph to make a relatively broad summary
according to current ADL research.

Truly, a number of ADLs have been proposed for modeling architectures by
various relative research institutions. Worth noting is that some kinds of ADLs are
developed in order to describe systems within a particular domain while some kinds
are as general-purpose architecture modeling languages. Generally speaking,
developers want to present their own understanding to software architecture and

124 Software Architecture

specified design concept via each kind of ADL.
As we mentioned above an ADL focuses on the high-level (abstract level)

structure of the overall application rather than the implementation details of any
specific source module. Therefore, what kinds of description elements will such
focus bring into an ADL? As a classical theory (Shaw, 1996), Shaw and Garland
define their elements for ADL, including components, operators, patterns, closure
and specification.

�9 Components (Shaw, 1996)
Computation modules that architecture consists of in abstract level. A module

can be physically discrete software elements or compiling unit. A module can be a
package with a logic independent function, even a more abstract concept peculiarly
belonging to software architecture.

�9 Operators
Interconnection mechanisms of components. Operators can be regarded as

functions for combining architecture elements into high-class components.
�9 Patterns
Compositions in which architecture elements are connected in particular way.

Patterns are reusable compositions of elements. A design pattern (or architecture
pattern) is a design template, which focuses on a specific issue, and will be
actualized (instantiated) in a specific design. The template will present the
constraints on elements election and elements interaction.

�9 Closure
Conditions in which composition can serve as a subsystem in development of

larger systems. Closure is such a concept to facilitate hierarchy description.
�9 Specification

Not only of functionality, but also of performance, fault-tolerance, and so on.
In fact, there are various views related to ADLs' elements proposed by

different scholars. Inspecting ADLs from the perspective of system description and
analysis, it is not difficult to find something in common.

First, ADLs should support runtime system topology analysis employing some
basic elements--components, connectors and configuration. As mentioned before,
components are independent functions, or computation units. A component may be
only a small procedure or the entire application. Components, as building blocks for
software architecture and encapsulated entities, interact with external environment
via interfaces. Connectors are building blocks used to establish the interactions
between components and rule these modules participating to the interactions.
Connectors, as main entities for modeling architecture, also have interfaces.
Interfaces of connectors declaim the participants in specified interactions.
Configurations specify topology information of components and connectors.
Configurations also provide relative information for validation. In a word,
configuration can present both design-time and runtime description for architect to
analyze and validate, which is ADLs' unique contribution to software development.
Furthermore, some ADLs can support system dynamic description, which means

4 Software Architecture Description 125

the system architecture can alter during run time, such as runtime component
addition, runtime component removal, runtime reconfiguration and so on.

Worth noting is that the components, connectors and configurations are not
necessary elements of an ADL, but such concept standing for computations,
interactions and integrations is general-purpose.

Second, ADLs may support hierarchical description and style definition as
extension mechanism. Hierarchical description allows architects to describe a
specified system in different abstract levers. The architect can describe subsystem
in order to reduce the description complexity, which means hierarchical description
brings more flexibility. The configuration merely specifies the structure of a single
system; its capability is limited. Architects may concern with an entire family of
systems and their abstract commonality. Style (e.g Pipe-filter style) description
usually is about some constraints on system topology, components and connectors
which could be employed; it could help architecture to model and analyze in higher-
lever abstraction.

Third, ADLs can employ formal methods to describe system behavior and
validate system. About this point, we have briefly discussed in Section 4.1.2 on
necessity of formalmethods, and we will propose a further discussion in details in
next section.

We have always reviewed usage, description and analysis capability from the
perspective of system architecture. However, if you design an ADL, what issues
will you consider? First of all you have to identify your design purpose. The design
of a language should reflect its intended purpose. As mentioned before, some kinds
of ADLs are developed for a particular domain while some kinds are general-
purpose architecture modeling languages.

The issues vary, and the solutions differ. If the primary purpose of a language is
to support a domain-specific design activity, such ADL should satisfy the basic
requirements of relative engineers, which means natural design vocabulary on
specified domain is crucial. However, if the primary purpose of a language is to
support formal analysis, then the design must most concern about minimality of
features and semantic simplicity in the design process.

In order to simplify this issue, we present a brief insight to ACME, an
architecture description language. We can acquaint with the design purpose from
such an example. Perhaps we are still confused of those introductions concerning
abstract conceptions and definitions. We need a simple example based on our own
research for more intuitionistic and concrete knowledge. And we will present and
discuss more design purposes and goals of various ADLs in Section 4.2.2.

ACME (Garlan, 1997) is designed to provide an interchange format for
architectural development tolls and environments. The top-lever concern is to
integrate a broad variety of separately-developed ADL tools by providing an
intermediate form for exchanging architectural information. In addition to primary
goal concerning interchange, the design also proposes some secondary goals: (1) to
provide a representational scheme that will permit the development of new tools for

126 Software Architecture

analyzing and visualizing architectural structures; (2) to provide a foundation for
developing new, possibly domain-specific, ADLs; (3) to serve as a vehicle for
creating conventions and standards for architectural information; (4) to provide
expressive descriptions that are easy for humans to read and write. (Garlan, 1997)

[----~Propertlies

shape=rect I wicth= 100 "'"
height=50 while(data)
color=blue read(resp~ I

Visualization
Spec Source Code [

Client

Throughout=
5 kbps
max_connect=
10

...

S e r v e r

R e p r e s e n t a t i o n s

Performance
Data

small-memory
Representation

Small-mem-RM:RepMap

I I
High-Performance

Representation

High-Perf-RM:RepMap

Fig. 4.2 A simple Client-Server system

System simple_cs -- {
Component client ---- {

Port send-request ;
Properties { Aesop-style : style-id ~- client-server;

UniCon-style : style-id-- cs;
source-code: external -- "CODE-LIB/client. c" } }

Component server ---- {
Port receive-request ;
Properties { idempotence : boolean-- ture;

max-concurrent-clients : integer-- I;
source-code: external ~- "CODE-LIB/server. c" } }

Connector rpc ~- {
Roles { caller,callee}
Properties { synchronous : boolean --true

max-roles : integer-- 2;
protocol : Wright-- " "} }

Attachments {
client, send-request to rpc. caller ;
server, receive-request to rpc. callee}

Fig. 4.3 Client-Server system described in ACME

A simple Client-Server system was shown in Fig,4.2, with several specific
properties and two kinds of client representations. First we go through system
specification in ACME depicted in Fig, 4. 3 omitting the properties and
representations. The most basic elements of ACME are components, connectors and
systems. Components are function units while connectors represent interaction; the
client and the server are respectively abstracted as two components, and are
connected via RPC connector. The ports of components and roles of connectors are

4 Software Architecture Description 127

interfaces, which indicate how to participate the interaction from perspectives of
diverse participants (component or connector). Attachments describe link
relationship of components and connectors, and support the configuration
specification (system).

Furthermore, ACME supports hierarchical description by employing
representations. Any components and connectors can be represented by one or more
detailed, low-lever description. The architecture of client component in Fig. 4.2,
represented within two representations, varies according to specific requirements--
small-memory and high-performance.

The above elements--components, connectors, ports, roles, system and
representations are sufficient to describe a system architecture. Nonetheless, do not
forget that ACME is an interchange language (Garlan, 1997). Each ADL typically
has its own set of auxiliary information that determines such things as the run-time
semantics of the system, detailed typing information, protocols of interaction,
scheduling constraints and information about resource consumption. As an
interchange language, ACME should own capability of containing the diverse
auxiliary information. Hence ACME employs properties as its basic elements to
accommodate such wide variety. Take the CS specification as example, properties of
component client indicate the styles when it was described in specific targets
ADLs-Aesop and UniCon. Likewise, the "protocol" property of the RPC connector
is declared in WRIGHT. Note that properties are uninterpreted values to ACME. If
we determine to make use of properties to do analysis, translation, and
manipulation, we may need tool support of other languages.

4.2.. 2 Comparing among Typical ADLs

There are various kinds of ADLs developed in research domain of software
architecture at present. We have mentioned the design purposes of those ADLs are
distinct when we make a brief introduce of ADLs. Now we present a comparing
among typical ADLs, e.g. WRIGHT, C2, Darwin, ACME, xADL, rt-ADL, KDL. Of
those above ADLs, we use KDL only as an example to illustrate the specific-
domain-oriented design purpose; KDL is not mentioned in the following sections
about comparison of basic description elements.

�9 Distinct Design Purposes
WRIGHT (Allen, 1997a)
WRIGHT is designed based on precise description of system architecture and

abstract behavior, description of architectural styles, validation of systems'
consistence and completeness. According to opinions of the WRIGHT's authors, an
architectural description language should provide two things at least: (1) a precise
semantics that resolves ambiguity and aids in the detection of inconsistencies; (2) a
set of techniques that support reasoning about system properties. Another goal is
to fit the architect's own vocabulary. WRIGHT aims to expose specified
abstractions and provides means for the architect to use them in structuring the
software system. In Section 4.3, we will introduce elements, syntax and semantics of

128 Software Architecture

WRIGHT in details. We can see how it meets these goals by then.
�9 C2 (Taylor, 1996)
C2 supports component replacement and reuse in Graphic User Interface (GUI)

development. Now, user interface accounts for a large fraction of software while
reusability is very limited. C2 focuses on reuse of components, particularly the
dynamic change of components in system runtime. Hence, goals of C2 include the
ability to compose systems in which: components may be written in different
programming languages; components may be running concurrently in a distributed,
heterogeneous environment without shared address spaces; architectures may be
changed at runtime; multiple users may be interacting with the system; multiple
toolkits may be employed; multip le dialogs may be active and described in different
formalisms, and multiple media types may be involved.

�9 Darwin
Darwin is a declarative language, it aims to provide general-propose notations for

specifying the structure of systems which are composed of diverse components
using diverse interaction mechanisms. It mainly focuses on specification of
distributed software system. Recent research on maintenance of the software
distribution system shows that employing distribution will help to simplify the
complexity of software components. However, such advantage is insufficient to
compensate an accompanying shortcoming of distribution sy stems--the complexity
of the architecture greatly increased. Darwin is designed to solve this problem. In
addition, Darwin also supports the specification of dynamic structures--system
evolutions in runtime. The following figure shows how Darwin describes a client-
server sy stem.

r "T'P

Component Server(

provide p;
>

Component Client{

require r;
>

Component System{

inst

A: Client B:Server

bind

A.r--B.p
}

Fig. 4 .4 Client-Server system described in Darwin

�9 ACME (Garlan, 1997)
ACME is designed as an interchange ADL. We have discussed the design

4 Software Architecture Description 129

purpose in previous introduction.
�9 xADL (Dashofy, 2005)
Many ADLs have borne during research over the past decade. This situation has

led to a plethora of notations for representing software architecture, each focusing
on different aspects of the systems being modeled. Meanwhile, reusability and
extensibility is very limited. Adapting an existing notation to a new purpose is as
difficult as redevelop ing a new notation entirely, xADL is developed for better
scalability for architect. It aims to provide rapid construction of new ADLs. Fig,4.5
shows an example description of connector.

< connector id = "tvconn" >
<description>
TV connector
</description>
< interface id-- "tvconn. in">

<description>
ChangeChannel Interface (in)
</description>
< direction> in</direction>

<\ interface>
< interface id: "tvconn. out" >

<description>
ChangeChannel Interface (out)
</description>
< direction> out</direction>

<\interface>
< \ connector>

Fig. 4.5 An example description of Connector in xADL

�9 n-ADL (Oquendo, 2004a)
n-ADL is designed to address specification of dynamic and mobile architectures.

The dynamic architecture namely means the architecture can evolve at runtime. The
mobile architectures are such architectures whose components can logically move
during the execution of the system, n-ADL is a formal, well-founded, theoretical
language based on the higher-order typed n-calculus. While most ADLs focus on
describing software architectures from a structural viewpoint, n-ADL focuses on
formally describing architectures encompassing both the structural and behavioral
viewpoints. An example of component described in n-ADL is shown in Fig~4.6.

component SensorDef is abstraction() {
type Key is Any. type Data is Any. t~e Entry is tuple[Key, Data].
port incoming is { connection in is in(Entry) }.
port outgoing is { connection toLink is out(Entry) }.
behaviour is {

process is function(d: Data) : Data { unobservable }.
via incoming: :in receive entry : Entry.
project entry as key, data.
via outgoing: :toLink send tuple(key, process(data)).
behaviour ()

}

Fig. 4 . 6 n-ADL component specification

130 Software Architecture

�9 KDL (He, 2005b)
KDL is an ontology-based E-commerce (EC) knowledge description language. It

can be regarded as an ADL developed for a specific domain--EC. Along with
flourish and development of EC, EC model has shown automated, intelligent and
mobile trends. Traditional EC platforms base on HTML lack of semantic
information, mix display information with data; it is difficult to achieve new
requirements of EC. KDL is designed as a simple and efficient approach for precise
definition and information interchange. In addition, this approach is based on RDF
(S) and concept of ontology. Finally, we can realize how KDL describes a category
via the example depicted in the following figure.

< dkl :DefinedClass rdf : ID :"CD" >

(rdfs : subClass0f rdf : resource : "Is >

< rdfs : subClass0f>

(kdl :Restriction>

(karl : onSlot rdf : resource : "hasStyle" >

(kdl : sufficient>

(rdf : resource : "MusicStyle"/ >

(/ kdl :sufficient>

(/ kdl : sufficient>

(/ kdl :Restricition>

(/ rdfs : subClassOf>

(/ kdl : DefinedClass>

<CD rdf : ID -- "MyCD" >

(hasStyle rdf : resource : "CountryMusic" / >

</"CD" >

Fig. 4.7 CD described in KDL

Majority of ADLs support runtime system analysis via some basic elements--

components, connectors and configurations. Hence, our comparing is based on

modeling for these building blocks. (M edvidovic, 2000)
�9 Modeling Components
All mentioned ADLs, such as WRIGHT, C2, Darwin, ACME, xADL, r~-ADL,

model components. Here we discuss the modeling support provided by ADLs for
different aspects of components.

�9 Interfaces
All mentioned ADLs support specification of component interfaces. They differ

in the terminology and the kinds of information they specify. For example, an
interface point in ACME , WRIGHT or rc-ADL is a port and, in xADL, just an
interface. On the other hand, in C2, the entire interface is provided through a single
port; individual interface elements are messages. Hence, a C2 component has exactly
two communication ports, one each on its top and bottom sides; top ports are
responsible for communication with superstratum components while bottom ports
are with substrate components. WRIGHT allows several ports in a components;
each port indicates an interaction with the other components via a connector.

ADLs typically distinguish between interface points that refer to provided and
required functionality. For example, provided and required interface providing
services is terms as output and input ports in Darwin.(Shown in Fig.4.8) WRIGHT,

4 Software Architecture Description 131

liter

input output

Component filter {
provide output<stream char>;

require input<stream char> ;
}

Fig. 4.8 A filter component in Darwin

xADL also support type definitions of interfaces. Particularly, WRIGHT specifies
the protocol of interaction at each port in CSP.

�9 Types
All of the mentioned ADLs distinguish component types from instances.

Especially, in ACME and xADL, components can be used as instances without type
definition. In addition, several ADLs (ACME, Darwin, WRIGHT and rt-ADL) make
explicit use of parameterization of component interface signatures, which is similar
to programming languages as Ada and C++.

�9 Modeling Connectors
ADLs model connectors in various forms and under various names. For example,

ACME, C2, WRIGHT, xADL and n-ADL model connectors explicitly and refer to
them as connectors. Darwin bindings representing connectors are modeled in-line,
and cannot be named, subtyped, or reused.

�9 Interfaces
In general, only the ADLs that model connectors as first-class entities support

explicit specification of connector interfaces. Most such ADLs model component
and connector interfaces in the same manner, but refer to them differently.
Connector interface points in ACME, WRIGHT are roles, in xADL still interfaces,
in n-ADL ports. Likewise, WRIGHT, xADL also support type definitions of
connector interfaces. WRIGHT specifies the protocol of interaction at each role in
CSP as the same.

�9 Types
Only ADLs that model connectors as first-class entities distinguish connector

types from instances. Hence, Darwin is definitely excluded. ACME, C2, WRIGHT,
xADL, rt-ADL base connector types on interaction protocols. Similarly, ACME and
xADL support connectors used as instances without type def'mition.

ACME and n-ADL also provide parameterization facilities that enable flexible
specification of connector signatures and of constraints on connector semantics.
Similarly to its components, WRIGHT allows a connector to be parameterized by
the specification of its behavior (glue) or the other parts.

�9 Behavioral Specifications
C2 supports specification of static component semantics via invariants and

operation pre- and post-conditions. WRIGHT extends component and connector
specifications with behavioral information, namely system behavior, in the language
of CSP.

132 Software Architecture

Darwin expresses models of interaction and composition properties of
composite components in the n-calculus. Similarly, n-ADL describes system
behavior via component and connector specifications in n-calculus.

As mentioned in Section 4.2.1, arbitrarily complex behavioral specifications are
treated as uninterrupted annotations in ACME, and would be analyzed by
supporting from the other ADLs; such mechanism employed in xADL is very
similar. Hence, the behavioral specifications are in different approaches according to
diverse ADLs supporting behavioral specifications independently (e.g., WRIGHT,
n-ADL).

�9 M odeling Configurat ions
�9 Comp ositionality
Most ADLs support hierachical description of components, where the syntax

for specifying hierarchy is similar to specifying configurations. Hierachical
description is viewed as a subsystem configuration from intuitionistic perspective.

It is interesting to note that Darwin does not have explicit constructs for
modeling architectures. Instead, it models architectures as composite components
instead of the concept of configuration. ACME supports hierarchical description
termed as representations; both any components and connectors can be represented.
WRIGHT allows both composite components and connectors: The computation
(glue) of a composite component (connector) is represented by an entire
configuration.

In n-ADL, components and connectors can be composed to construct composite
elements, more complex components or connectors. Furthermore, composite
elements can be decomposed and recomposed in different ways or with different
components in order to construct different compositions.

* Heterogeneity
Of those ADLs that support implementation of architectures, several are also

tightly tied to a particular programming language. For example, Darwin only
supports development with components implemented in C++. C2 currently
supports development in C++, Ada, and Java, while xADL supports development
in Java.

�9 Dynamism
Darwin, C2 and n-ADL support the dynamic description of configuration, which

means the system can change at runtime.
Darwin specifies dynamic system architecture using lazy and direct dynamic

instantiation. Note that in Fig.4.9, bindings are specified for the component type
poller rather instances of this type as usual. The provided service newport is bound
to service dyn poll. When invoking newpoll service, a new poller instance will be
created and linked to component M. This is an example that Darwin allows runtime
replication of components via direct dynamic instantiation. Furthermore, Darwin
allows deletion and rebinding of components by interpreting Darwin scripts.

C2' s architecture modification (sub) language (AML) specifies a set of
operations for insertion, removal, and rewiring of elements in an architecture at

4 Software Architecture Description 133

Component sensornet {
require sensout<port smsg> ;
provide newpoll<dyn int> ;
inst
M:mux;
bind
M. output-sensout ;

Fig. 4.9 Dynamic instantiation

runtime: addComponent, removeComponent, weld, and unweld. (Taylor, 1996)
~-ADL allows that behavior description creates instantiation of predefined

component or connector type according to run-time parameters a n d certain
condition. (Oquendo, 2004a) Hence a system architecture may depends on parameter
or different environments. But this is not known at design time, it is only
discovered at runtime. Particularly, ~-ADL also supports description of mobile
architecture.

After all most ADLs only support system description statically. The difficulty
not only limits the creativity of architect, but also limits the use of ADL in
software engineering, The designers of new ADL hope to meliorate such situation,
so supporting of dynamism become a trend feature in area of designing ADL. For
example, the designers of xADL plan to expand the xADL 2.0 schemas to include
new modeling constructs, particularly those that will support the specification of
distributed and dynamic architectures.

4 . 2 . 3 Describing Architectural Behaviors

Architect should describe the system architectural behaviors through certain
approaches. The specification only concerning attachment of typed components and
connectors without architect behaviors is not sufficient to describe a system, the
designer's purpose either. We have to precisely specify the computation and
interaction and so on which are combined to complete the function of the system,
namely system behavior.

We have mentioned that the formal methods do have more advantages in
architectural behavior description compared with informal approaches. Advantage of
machinery expression and computation, formal and exact definitions without
vagueness make formal approaches conspicuous. Among multitudinous formal
methods, process algebras represent a diverse family of related approaches to

134 Software Architecture

formally modeling concurrent systems. Process algebras provide a tool for the high-
level description of interactions, communications, and synchronizations between a
collection of independent agents or processes (could be regarded as patterns of
behaviors). The prominent contribution is that process algebras provide formal
computation and transformation of processes, also foundation of system behavior

validation.
Such diverse family includes CCS (Milner, 1980), CSP (Hoare, 2004), ACP

(Bergstra, 1987), and some recent members as the n-calculus (Sangiorgi, 2001), the
ambient calculus (Cardelli, 1998) , and so on. In this section, we mainly introduce

CCS, CSP and rr-calculus.

�9 CCS
The Calculus of Communicating Systems (CCS) is a process algebra as a model

of concurrent system developed by Robin Milner. CCS is the pioneering work in the
field of process algebra; some famous process algebras--both CSP employed by
WRIGHT and rt-calculus employed by Darwin and rt-ADL are developed on the

foundation established by CCS.
The basic elements of CSS are events and processes. Generally, capital letters

donate processes and lowercase letters donate events. The events of CSS consist of
_ _

two labeled sets A = { a , b , c , . . . } and A - - { a , b , c , . . . }. A is input event set
while A is output events set; A and A need to satisfy the following conditions: A- -
{ x I x E A }. a and a is a pair of coordinated events; the communication of different

processes only happens via a pair of coordinated events.
If P is a process and x is the first event P engages in, the rest after execution of

x event can be described as Q; then the process P can be denoted as x. Q. Here, x
G A U A, the notation . is sequential operator. For example,

P1 = a. b. NIL (terminal process)
P z = a . c. Pz(recursion process)
The process NIL is a special process which never engages in any events. NIL

can be regarded as a terminal signature of a process. In the above example, P1 is a
process which engages in a and b sequentially, then finally terminates. P z is a
recursion process which engages in a and c repeatedly, and never terminates. In
CCS, description of complex problems can be simplified and expressed by

composition of some processes.
�9 CSP
CSP is semantic basis of formal behavior description employed by WRIGHT.

That is, WRIGHT supports behavioral description and validation via CSP. In brief,
CSP provides a different model of behavior from the state-machine models. Rather
than describing a machine as a collection of states composed into a graph of
transitions, a behavior is described through an algebraic model of processes, in which
complex behaviors are constructed from simpler ones via a small set of operators.
Such approach of simplification is very similar to CCS, the relative foundation of
CSP. In the study case of WRIGHT, we will introduce CSP syntax and those
operations in details.

4 Software Architecture Description 135

�9 n-calculus
The n-calculus is a process calculus originally developed by Robin Milner,

Joachim Parrow and David Walker as a continuation of the body of work on the
CCS (Calculus of Communicating Systems). The aim of the n-calculus is to be able
to describe concurrent computations whose configuration may change during the
computation. A brief introduction to n-calculus can be found in the Section 8.2.1.

4 . 3 Study Case: WRIGHT System

The WRIGHT architecture description language was proposed by Robert J. Allen in
his dissertation for degree of doctor of philosophy, in 1997 (Allen, 1997b). In order
to figure out the problems facing architecture designers that software systems
become more complex, the author combined formal methods and purely structure-
based ADLs to design the WRIGHT language. The author claimed that WRIGHT is
designed to support description of architecture configurations and styles, analysis
of properties of interest and application to practical problems on real systems.

How does WRIGHT achieve these requirements above, that is, to support such
description and analysis? We explain the question from both perspectives and make
further discussion in this section.

As a structure-based ADL, WRIGHT is based on the formal description of the
abstractbehavior of architecture components and connectors, which is its basic
design concept. The Component and the connector are significant elements of
WRIGHT; hence we discuss these two elements particularly in details within the
following section. Additionally considering completeness of description ability,
WRIGHT also permits designer to describe and analyze system configuration and
architecture sty le.

Meanwhile, as a formal approach WRIGHT uses a notation developed from CSP
(Communication Sequential Processes) to describe the abstract behavior between
architectural components. It defines independent connector types as interactions
type and uses predicts to characterize architecture style. With the support of
relevant formalisms, WRIGHT is able to provide static validations over consistency
and completeness and deadlock free of a certain architecture specification, which is
most valued for architecture designers to use a formal approach. All these above
make WRIGHT distinguished from the other ADLs.

We all realize that although all of the ADLs are concerned with architectural
design, each of them exactly provides certain distinctive capabilities according to
specified design concept. As a conclusion, the remarkable capability of WRIGHT is
its support for the specification and analysis of abstract interactions between
architectural components.

For the further discussion, we propose our study case based on Knopflerfish, an
open source implementation of OSGi framework to introduce the basic elements and
relevant behavior description formalism of WRIGHT. OSGi (Open Service Gateway

136 Software Architecture

initiative) is presented by OSGi Alliance which was founded by Sun Microsystems,
IBM, Ericsson and others in March 1999. The initial target of OSGi is to provide
home service gateway for service provider in order to provide various services for
home intelligent devices. Now OSGi has gradually become a transmission and remote
management service platform for applications and services of various network
devices including home devices, vehicles, mobile phones and so on. And framework,
one part of OSGi specification, provides a Java technology-based lightweight (fully
J2ME-compatible) container for dynamic software components.

Since we discuss only a small portion of OSGi framework in high-lever
abstraction with few details, it is not necessary to deeply understand the
specification and technique details of OSGi of the implement details of
Knop flerfish.

In this chapter, we mainly introduce the basic elements of WRIGHT including
description of components and connectors, descriptions of configuration and styles.
We also introduce how WRIGHT develops CSP to describe formal behaviors of
interaction. After that, we show some validation mechanisms provided by WRIGHT
to check our OSGi framework description.

4 . 3 . 1 Description of Component and Connector

WRIGHT, as an architectural description langtmge, is built around the basic architectural
abstraction of components and connectors. Components and connectors are the most basic
elerm~ts of architectural description. WRIGHT provides explicit notations for each elerm~t
it uses. In this section we introduce how to use these notations to describe the basic
architecture in an accurate way and show how WRIGHT fonmlizes the notions of
components as computation and connector as pattern of interaction using our study case.
We discuss component and connector from architecture aspect, deliberately defening the
details of fontal behavior description of computation and interaction to sin~lify the
introduction.

We use a portion model extracted from Knopflerfish as a simple example to
continue the introduction to WRIGHT. We concentrate those modules related to
services. We call this simplifted system "Bundle Management System" (BM
System for short). The service in OSGi is an object that provides some well-defined
functionality which is defined by the object classes it implements. It is possessed
by a bundle and run within a bundle. A bundle owns services that might be provided
to other bundles and might uses services provided by the other bundles. Users of
this system control Framework through user interface, then Framework is in charge
of starting or stopping a bundle. If a bundle wants to make functionality of a certain
service available to the other bundles after being started, it must register the service
to the framework. The framework handles service registration to manage the
dependencies between the bundle owning the service and the bundles using it. ~

This architecture is shown informally in Fig,4.10. Actually WRIGHT doesn ' t
support formal description for visualizing diagram, so there w o n ' t be a formal
figure described by WRIGHT. The two components are Bundle and Framework,

4 Software Architecture Description 137

1_ Life Control]
Bundle]~ ..._1 Framework

I-" Service "-I
Registration

Fig. 4.10 A model system extracted from Knopflerfish

which are related to services and the exact participants of service registration and
unregistration. We only concern the operations of them related to services running,
The Bundle initiates and sends the request about service registration or
unregistration to Framework. And it might use services from other bundles or
provide services to other bundles. The Framework controls life time of bundles
obviously. Also it handles service registration according to the request and the
limited condition and then sends response to Bundle. The life time of bundles is
controlled via unidirectional connector. Requests and responses are transmitted
between Bundle and Framework via the bidirectional connector.

�9 Components
As the defmition made by the author, a component describes a localized,

independent computation. Now forget the definition above because it is obviously
abstract and increases difficulty to comprehension. L e t ' s come back to look into
different architecture styles to find out what a component is about. For example in
a pipe-and-filter system, a component might be a filter which reads stream on input,
does local incremental transformation to this input stream and outputs the
transformed stream. In event-based system, components might be event announcer
and event processor. In a layered system, component might be a layer which serves
assigning distinct and special functions, hides lower layer and provides services to
higher layer.

In WRIGHT, a component is divided into two important parts for description,
the interface and the computation. An interface consists of several ports, each of
which represents an interaction in which the component may participate. For
example, in pipe-and-filter system, a filter component might have several ports for
stream input or stream output. In event-based system, event announcer might have a
port for announcing events to event processor.

The framework in Knopflerfish implementation is comprised by a series of
classes, and imp lements lots of complex functions. Nonetheless, concerning the BM
System presented in Fig,4.10, the Framework is simplified for the requirement of
description aspect and discussion convenience. So it has only two ports (shown in
Fig,4.11), one called Control to start and stop running of a certain bundle, one called
Registration to receive request from the Bundle and send response back. All of these
operations are accomplished through procedure calls. And descriptions of ports
only indicate that Framework participates in interactions by procedure calls, but not
indicate which component it interacts with. The words in brackets are only a
supplementary explanation, but not parts of formal ports description.

Do not forget that there is another part of component description called

138 Software Architecture

Fig. 4.11 The illustrative framework component

computation. Computation describes the actual action of a component. Computation
and port are not unrelated conceptions. The computation carries out the interactions
described by the ports and makes the interactions as a meaningful coherent whole
through statements in it. The computation of Framework involves starting and
stopping a bundle by invoking function and managing service registration by
providing invoked function. A sample description of the component Framework is
depicted in Fig,4.12.

Component Framework
Port Control [invoke function (to start or stop a bundle)]
Port Registration [provide invoked function (to receive request of service registration or

unregistration, then send response)]
Computation [start or stop a bundle; get request from Registration, manage service registration,

then send response by Registration]
Fig. 4.12 A component description

When we describe a component using WRIGHT, the port description indicates
some aspect of the component ' s behavior and the entire behavior description is
completed by computation specification. In addition, the description of a
component above concerns about semantic structure of WRIGHT, so the behavioral
description is still informal and will be formalized in following introduction. And for
architecture designer and implementer, more useful information provided by port
description is that it could tell us about the expectation of a component when it
interacts with other components. From the Port Registration, we find out that
Framework expects to obtain some request about services.
Although component is formally divided into two parts, the computation and the
ports, that doesn ' t mean they are independent elements and could be described
separately. To make a component description meaningful to system design, we must
make sure the computation doesn' t violate the interface. The component
description must be consistent, which means that computation must obey the rules
of interaction defined by port. WRIGHT provides such a mechanism to validate
consistency by using formalism notation, which we will introduce in Section 4.3.4.
Additionally the name of each port must be unique within a given component for
distinction, so must the name of each connector role.

From the definition and description of components in WRIGHT, we recognize
that a component completes its own independent computation through interactions
with the system. Ports of the component describe how the component participates
in interactions as a function module of the system and what the component expects
in interactions. The description above does involve interactions, but it is actually
around the computation of the component and i sn ' t concerning interactions
themselves. Hence WRIGHT employs a connector to describe an interaction itself,

4 Software Architecture Description 139

that is, to proclaim rules of an interaction.
�9 Connectors

We already know that a connector describes an interaction among several
components. There are extremely distinguishing connectors according to different
architecture styles. In a pipe-filter system, a connector is just a conduit for streams;
in a layered system it represents communication protocols or interfaces between
two neighboring layers; in an event-based system it is in charge of messages
transmission. Coming down to actual implementation, we might realize connectors
by an entire class, references between classes, or even a simple procedure call. And
in our sample system, connectors between Bundle and Framework are procedure
calls.

WRIGHT uses the conception of connectors to achieve two important purposes:
First to extend the applicability of analysis, and second to increase the independent
of components. For applicability of analysis, a connect type can represent a pattern
of interaction, and the pattern can be used repeatedly in connector instances.
WRIGHT reveals the commonality in a certain architecture by reusing the connect
type. Although interactions between Buddle and Framework have different
meanings, we can use the form of procedure calls to represent these interactions,
evidently different procedure calls in implementation. Also we can use the form of
procedure calls in other interactions of the system, such as service using and
providing related to bundles. When we are developing a large and complicated
system, adopting the interaction patterns simplifies management of change and the
structuring of implementation.

Structuring the way in which a component interacts with the rest of the system
does increase the independence of components. A connector provides an information
hiding boundary that clarifies what expectations the component can have about its
environment, which means a component specification can be used in multiple
contexts. The Framework description doesn' t concern about which component
invokes its function through Port Registration or which component ' s functions it
invokes. The component specification only concerns about its own functions which
are open to the external, because the connector specifications describe how the
components is combined with other components in the system.

After discussing the expressional meaning and author 's design purposes of
connectors, we introduce how to describe connectors. In WRIGHT, a connector is
also divided into two important parts for description, a set of roles and the glue. It
is clear that the roles and the glue serve the interaction description.

The roles indicate the expectation for any component participating in a certain
interaction, as the ports of a component indicate the expectation of it when it interacts with
other components. They are sermntically same because they both involve the interaction
expectation. Nonetheless they describe the expectation from different aspects; the ports
observe the interaction from the aspect of components while the roles describe the
expectation from the aspect of interactions themselves. For example, a pipe connector has
two roles, the data source and the sink and an event broadcast connector has an event

,

140 Software Architecture

broadcaster and several event listeners.

The glue of a connector describes how the participants work together to create
an interaction. That means glue establishes the rules for roles and coordinates the
roles to accomplish an interaction according to the certain rules. For example, the
glue of a pipe connector might specify that sink receives data delivered by source in
the same order using first-in-first-out strategy. And the rules can vary for different

design purposes; the sink of a pipe might receive data reversely using first-in-last-

out strategy or the sink might get nothing because the glue of a pipe simply ignores

the data delivered by source.

Fig. 4.13 The illustration of a Procedure-call connector

In our sample system, a Procedure-call connector are shown in Fig.4.13. The

connector has a caller and a definer, and its glue coordinates the Caller and the
Definer to accomplish the procedure call, the actual interaction between the Bundle
and the Framework.

Connector Procedure-call
Role Caller [invoke function]
Glue Definer [provide invoked function]
Glue [Caller invokes function of Definer; Definer returns the relevant results to Caller]

Fig. 4.14 The semantic structure of a connector description

The description of a procxxture-call connector is displayed in Fig 4. 14. Each role

specifies the behavior of a single participant in the interaction. The role Caller indicates that
any component which participates in procedure-call and acts as a caller will invoke function

while the role Definer indicates those component acts as a definer will provide invoked
function. The Glue of the connector represents the full behavioral specification just like the

computation of a component. As its description responsibility, the glue indicates that Caller
initiates the invocation and then Definer returns the relevant results. Because the current

behavior specification is temporarily informal, we aren ' t clear about the coordination of

Caller's and Defmer's behavior. We wonder whether Caller will just wait and do nothing
until it gets return from Definer. This problem is caused by ambiguity of natural langaag~,

and it will be fixed by employing CSP to describe the behaviors fonmlly.

It is worth noting that the descriptions we introduce above represent types of
components and connectors, because in a system there might be many components
or connectors that are in the same type. A connector type is abstraction

representing a certain kind of interaction; it can be used in different context of
different components. That is, if components obey the behaviors specified by the
roles, the connector can combine the components by the glue and ignore the actual

computations of the components. A collection of components are combined by
different connectors as roles so that the computations of components are
coordinated by the glues to form a larger computation, that is, the system.

4 Software Architecture Description 141

4 .3 .2 Description of Configuration

After presenting components and connectors, the most basic elements of
architectural description in WRIGHT, we introduce how to describe a complete

system architecture. Architecture designers need to draw a blueprint to describe the
system architecture and behavior by link of component and connector instances of
components and connectors. That blueprint is called a configuration. In this section,
we introduce the elements of a configuration-instances and attachments, also
hierarchical configuration. An example configuration of the BM System is depicted
in Fig,4.15, but we omit that bundles provide services for each others to simplify

the current description.
�9 Instances
The descriptions we introduce above actually represent types of components

and connectors, because in a system there might be many components or connectors
that are of the same type. That is, the type descriptions represent the properties
and behaviors of certain types of components and connectors, rather than actual
samples in use. For example, "Procedure-call" is a connector type; a certain system
might use several instances of procedure-call. When we use it to describe the actual
interaction of a given system, that type must be instantiated. We use the instances
of different types to describe a system architecture just as we use object-instances
of classes to program in object-oriented programming language. The name of each
instance in a given system must be explicit and unique for distinction; otherwise the
system architecture would be confused and ambiguous for system developers. As
presented in Fig, 4. 15, instances specification follows type specification of

component s and connectors.
�9 Attachments
Suppose that we have all the necessary parts and screws to assemble a toy

truck, we have to know how to attach specific parts to each others by screws. The
blueprint should be instructional, so the configuration i sn ' t complete without
describing the attachments. The attachments indicate attaching relationship between
a certain component with a certain connector. In other words, the attachments
declare which component participates in which interaction, which is done by
associating the component 's port with the connector's role.

Attachments are declared in such form as "FrameworkA.Control as P 1.Caller". It
indicates that the component FrameworkA will play the role of Caller in interaction
P1 defined by the Procedure-call connector. That is, FrameworkA will invoke
function of P l ' s definer. The second attachment declaration "BundleA.Activator as
P1.Defmer" specifies that the BunndleA will provide the certain invoked function.
Note that the attachment declarations about P2 indicate that BundleA plays the
Callers while AFramework plays the Definer. The invoking relationships are just

reversal in P 1 and P2.
In addition, a port must be compatible to a role if the port is attached to the

role. That d o e s n ' t mean the port behavior description must be exactly the same

142 Software Architecture

with the role behavior description, but. that if a component wants to participate an
interaction defined by a connector, the port of the component has to obey the rules
specified by the role.

Conf igurat ion BundleManagement

Component Framework
o,o

Component Bundle
~176

Connector Procedure-cal 1
o~

~

Instances

FrameworkA: Framework

BundleA: Bundle

P1 �9 Procedure-call

P2 : Procedure-call

Attachments

FrameworkA. Control as PI. Caller

BundleA. Activator as P]. definer

BundleA. Register as PI. caller

FrameworkA. Registration as PI. definer

End Bundl eManagement

Fig. 4.15 The sample configuration of BM system

�9 Hierarchy

Sometimes we might need to describe a given system in different abstract levers.
We might divide the system into a number of subsystems for description in order to
reduce the description complexity; and then integrate all the subsystem descriptions
into an entire system description. That is, w e need to describe a system with
hierarchy supp on.

Fortunately, WRIGHT supports hierarchical descriptions. In WRIGHT, the
computation of a component or the glue of a connector can be regarded as a
subsystem and described just as a system configuration we mentioned above. In that
case the component or the connector serves as abstraction boundary for a nested
architectural system. Suppose now we use a nested architectural system description
to describe the computation of a component. There must be one unattached port in

the nested description at least because the computation should include specification
about t he interact ion the component p art icip at es in. Meanwhile the comp onent will
define all of its ports outside computat ion-- the nested description, so that
unattached port is actually defined repeatedly. WRIGHT employs bindings to
associate the outside port name and the inside name. And they are for roles when
we use a nested architectural system description to describe the glue of a connector.

A hierarchical specification based on the BM System is shown in Fig,4.16. In
fact, Framework has a collection of components with different functions and two of
them are related to the BM System. The BundleControl is in charge of bundles
survival control, while the ServiceManagement manages service registration. And the

4 Software Architecture Description 143

nested description involves bindings specification to associate the certain ports that
represent the interaction with the outside component.

Configuration BundleManagement
Component Framework

Port Control
Port Registration

�9 Computation
Configuration BundleService
Component BundleControl

�9 . .

Component ServiceManagement
�9 . .

Instances
BundleControlA : BundleService
ServiceManagementA :ServiceManagement

Attachments

End'BundleService
Bindings

BundleControlA. Control= Control
SeviceManagementA. Registration= Registration

End Bindings
Component Bundle

�9 . .

Connector Procedure--call

Instances

Attachments

End BundleManagement
Fig. 4 .16 Hierarchical specification of BM system

4 . 3 . 3 Description of Style

We have introduced the basic elements employed by WRIGHT, and how to employ
those elements to describe a complete system architecture in the system
configuration. As we know, the configuration merely specifies the structure of a
single system. However, as architects, we need to concern with a system in the
context of an entire family of systems. Software architecture styles represent the
relationships between components and components: the restriction of component
application and the composition and design rule relative to components.

Supporting description of style is one of main distinct characteristics of
WRIGHT. In this section, we briefly introduce the elements adopted to describe a
system architectural style, including interface types, parameterization and

constraints.
As we mentioned before, component and connector types represent the

conception of reuse to parts of system. However, we need certain conception of
reuse for interior of components and connectors to describe an architectural style.
That is, the properties of a style might concern about and constrain only part of a

144 Software Architecture

component or a connector, such as por ts and roles. For example, in the pipe-fil ter

style, each component works as a filter for stream, so almost each of those

components needs input and output ports for dataflow. Although the numbers or

names of input and output ports differ according to certain filters (e.g. Usually the

original source might only have output por ts while the final sink might only have

input ports.), the data input and output is a kind of commonality shared by all the

filters (components) deliberately ignoring those distinguishing internal functions. In

WRIGHT, we use interface types to describe such commonalities of components

and connectors, namely patterns of ports and roles. Fig.4.17 shows how to define

input and output por ts within interface types .

Interface Type DataInput = [read data repeatedly, closing the port at or before end-of-data]
Interface Type DataOutput = [write data repeatedly, closing the port to signal end-of-data]

Fig. 4.17 Interface types of ports

Obviously interface types most are used as the por ts o f a component, but also

can be used as the roles of a connector. Take the roles of connector Procedure-call

as example, we can realize that the definer should provide invoke function with
return values as defined in Fig.4.18.

Interface Type ICaller =
Interface Type IDefiner =

[invoke function, get return values]
[provide invoked function which has return values]

Fig. 4.18 Interface types of roles

How the architectural description can cover more situations and achieve
flexibility is a significant question we face when describing families of systems

rather than a single system. WRIGHT achieves such requirements by parameterizing
the type descriptions. For example, in our BM system, a bundle as a component

owns distinct services that might be provided to other bundles. However, Bundle

components all have a port named Activator to receive starting demand, a port

named Register to register services to Framework and numbers of por ts related to

service using and providing. Each bundle has three types o f ports to participate

interactions with external, but the computat ion performed by each bundle differs
according to different services provided.

Component Bundle (S: Computation, n: 1..")
Port Activator = IDef'mer
Port Register = ICaller
Port Servicel..n [invoke service functions or provide service functions]
Computation = S

Fig. 4.19 Parameterization in WRIGHT

As shown in Fig~4.19, we parameterize computat ion as above reason, so we can

use this description to describe any bundle with any services. Note that we may not
know how many bundles a certain bundle will interact with in service using and

providing, hence we make the number of service por ts to indicate that there may be
more than one service por ts in a bundle allowedly. In fact, WRIGHT permits any
part of the description of a t y p e to be replaced with a parameter. So the types of a

4 Software Architecture Description 145

port or role, a computat ion, the name of an interface, etc., are all parameterizable.

Nonetheless, it is woi'th noting that all the parameters including the numbers must

be determined when the t y p e is instantiated. The determination of ports amount
also demonstrates the static nature of a WRIGHT description. WRIGHT assumes

that the set of components and the interaction do not change at run time. Although

WRIGHT has the conception of parameterization, that d o e s n ' t mean WRIGHT is

an ADL suppor t ing dynamic architectural description.
Finally we introduce the constraints used in WRIGHT. If a sys tem is in the

pipe-filter style, one condi t ion must be met at leas t - - i t must use only filter

components and p ipe connectors. A WRIGHT style description declares those

properties any configuration of a style must obey with the constraints. The author

of WRIGHT use first order predicate logic to express the constraints, which is

intuitionistic. The constraints refer to the following sets and operators, and all the

notations are predefined by the author (shown in Fig,4.20):

Components: the set of components in the configuration.

Connectors: the set of connectors in the configuration.

Attachments: the set of attachments in the configuration. Each attachment is

represented as a pair of pairs ((comp, port), (conn, role)).

Name(e) �9 the name of element e, where e is a component, connector, port, or role.

Type(e): the type of element e.

Ports(c) : the set of ports on component c.

Computation(c): the computation of component c.

Roles(c) : the set of roles of connector c.

Glue(c): the glue of connector c.

Fig. 4.20 Constraints notations

Thus, we can use some of these notations to describe the pipe-fil ter style. Those

constraints shown in Fig'4.21 mean that all the connectors must be pipes and all

components in the sys t em employ only Datalnput and DataOutput ports .

Employing first order predicate logic is intuitionistic and mathematical indeed, but

the situation differs if we want to use first order predicate logic to express a

particular or complicated constraint. Once we u s e a lot of predicates,

correspondingly, the constraints become complicated, unreadable and difficult for

analyzing,

Style Pipe-Filter
Connector Pipe

Role Source [deliver data repeated/y, signalling termination by close]
Role Sink [read data repeatedly, closing at or before end of data]
Glue Sink [will receive data in same order delivered by Source]

Interface Type Datalnput = [read data repeatedly, closingthe port at or before end-of-data]
Interface Type DataOutput = [write data repeatedly, closing the port to signal end-of-data]
Constraints
V c:Connectors . T y p e (c) : P i p e V V c :Componene t s ,

p:Port I pE Port(c) �9 Type(p) = Datalnput V Type(p) = DataOurput
Fig. 4.21 Constraints in the Pipe-Filter style

146 Software Architecture

4 . 3 . 4 CSPmSemant ic Basis of Formal Behavior Description

CSP is short for Communicating Sequential Processes, established by Hoare in
1978. (Hoare, 2004) Actually, the original CSP presented in Hoare' s 1978 paper was

essentially a concurrent programming language. After the development and
refinement by Hoare, Stephen Brookes, and A. W. Roscoe, CSP was transformed
into its modern form. (Brookes, 1984)

Current CSP is a formal language for describing patterns of interaction in
concurrent systems. It is a member of the family of mathematical theories of
concurrency known as process algebras, or process calculi. The process algebras are
a diverse family of related approaches to formally model concurrent systems.
Process algebras provide a tool f o r the high-level description of interactions,

communications, and synchronizations between a collection of independent agents or
processes. As a member of process algebras, CSP provides algebraic laws which
allow process descriptions to be manipulated and analyzed, and permit formal
reasoning about equivalences between processes. CSP is practically applied in
industry as a tool for specifying and verifying the concurrent aspects of a variety of
different sy stems.

WRIGHT employs CSP as semantic basis to describe behavior formally.

Basically, CSP can be regarded as a mathematical tool, which possesses its own large
set of notations and complex operational rules. CSP provides a different model of
behavior from the state-machine models. Rather than describing a machine as a
collection of states composed into a graph of transitions, a behavior is described
through an algebraic model of processes, in which complex behaviors are constructed
from simpler ones via a small set of operations. These operations include sequencing
(one behavior occurs after another), alternative (one of two behaviors will occur),
and interaction (two behaviors are combined by synchronizing on shared events).

We are unable to introduce CSP in detail because of restriction incurred by content
of this section; we strongly suggest readers read relevant CSP books before reading
following contents.

4 . 3 . 4 . 1 Events and Processes

The fundamental elements of CSP are events and processes. What are events and

processes on earth? This is a problem encountered by every CSP beginner.
An event is the basic unit of a CSP behavior specification. Suppose we are

describing behavior of an arbitrary object such as clock or basketball or vending
machine. To describe different patterns of behavior, first decide what kinds of event

or action will be of interest. In the words, different events mean different actions.
For example, the call event means that Caller invokes functions while the return
event means Definer return relevant results to the Caller. Particularly note that each
event name denotes an event class; there may be many occurrences of events in a
single class, separate in time. Additionally, the exact timing of occurrences of events
has been ignored deliberately. The set of names of events which are considered
relevant for a particular description of an object is called its alphabet. The alphabet

4 Software Architecture Description 147

is a permanently predeffmed p roper ty of an object.
WRIGHT does concern how different components control interactions, which

means that an initiated event and an observed event are different for different

components, although they may refer to the same event. In an interaction, a

component may initiate an event to accomplish its own job or to communicate wi th
the other component, or to make a response according to an observed event which is

initiated by the other component. Hence, the authors of WRIGHT add notat ion to

CSP to distinguish events initiated from observed between initiating an event and

observing an event. An event that is initiated by a process is wri t ten wi th an

overbar within that p roces s ' definition while an event wri t ten without overbar

represents that it is observed by that process. For example, the specification o f the

Registration por t of the Bundle would use the event call to indicate that it initiates

this event. On the other hand, the Activator port observes the event call initiated by

Framework and returns relevant results, therefore no overbar appears. Additionally,

WRIGHT regards signaled events as initiated events. The p ipe mechanism signals

end of data, so its event would be writ ten end-of-data.

Event can also carry data, which is one of important propert ies of events. I f a

process supplies data as output , the specification is written with an exclamation

point. If a process receives data as input, the specification is wri t ten wi th a

quest ion mark. For example, the caller for a Procedure-call supplies data when it
invokes functions with parameters" call!X; relatively the definer as an invoked

function waits for input parameters: cal l .~ Output is usually signaled (e!x) and

input is usually observed (e?x). However, note that this is not always the case.
In CSP, ,,/ is a special event, which denotes the successful termination of the

process. This special event is not a real event initiated or observed by any

components , but just a symbol representing a successful end of the communication.

We call that process engages in the successful termination because i t ' s not

necessary to distinguish whether x/ is initiated or observed. Actually the CSP does

not have overbar notation and do not distinguish the initiated and observed event, so

in CSP the specification is usually as that process P engages in event E.
N o w we have known basic conception about events, which is the first step to

understand CSP. We can use events, the basic element of behavior to construct

process. Process stands for the behavior pat tern of an object, as it can be described

in terms of the limited set of events selected as its alphabet.
Learning the following conventions in CSP before we introduce the specification

of processes and operations of processes would be helpful: (Hoare, 2004)

�9 Words in lower-case letters denote distinct events.

�9 Words in u p p e r c a s e letters denote specific defined processes, and the letters

P , Q , R (occurring in laws) stand for arbitrary processes.

�9 The letters x , y , z are variables denoting events.

�9 The letters A , B , C stand for sets of events.

�9 The letters X , Y are variables denoting processes.

�9 The alphabet of process P is denoted aP.

148 Software Architecture

We can regard a process as a special script for an object to follow. The script

records the sequence and possibility of all the events rather than the time when an

event is engaged in or the time length an event last for. In order to describe the

sequence and possibility of all the events engaged in, processes are depicted by

combining events and other, simpler processes.
Prefix is the simplest way of constructing a new process within the conception

of sequencing,, Let x be an event and let P be a process. Then (x - ~ P) (pronounced

" x then P ") describes a process which first engages in the event x and then behaves

exactly as described by P. The simplest process in CSP is STOP, the process which

does nothing, The more formal definition is that the process with alphabet A which

never actually engages in any of the events of A is called STOPA. WRIGHT deirmes

the success process with prefix. The success process w , namely w / --~ STOP, which
successfully terminates immediately. Note that the ---~ operator always takes a

process on the right and a single event on the left. Hence, if P and Q are process, it
is syntactically incorrect to write P - ~ Q . Similarly, if x and y are events, the

specification x--~y is not allowed. Such a process could be correctly described x - ~
(y---~ STOP). In addition, the brackets could be omitted in the case of linear

sequences of events on the convention tha t -~ is right associative. So the above

process could be written x--~y--~STOP simply.

Employing only prefix is not possible to describe more meaningful behaviors.

The only processes we can describe would be those that engage in a single string of
events, of a fixed length, and then stop. How to describe the everlasting behavior of

a process? In CSP, we can employ a recursive definition to achieve this. For
example, consider the following process definition: P - - e - - ~ P . The process named

P performs the event e and then acts as the process P. That is, this process only

engages in the event e and never stops.
But we have to note that the recursive equation X - - X does not succeed in

defining anything because everything is a solution to this equation. A process

description which begins with a prefix is said to be guarded. If F (X) is a guarded
expression containing the process name X, and A is the alphabet of X, then the

equation X - - F (X) has a unique solution with alphabet A. It is sometimes

convenient to denote this solution by the expression /~X : A �9 F (X) . The

alphabet A could be omitted usually.

By means of prefixing and recursion it is possible to describe objects with a

single possible stream of behavior. However, some objects behave according to

different events, which mean their behaviors are influenced by interaction with the
environment. It is called choice. If x and y are distinct events (x--~ P [y--~ Q)

describes an object which initially engages in either of the events x or y. After the

first event has occurred, the subsequent behavior of the object is described by P if
the first event was x, or by Q if the first event was y. Since x and y are different
events, the choice between P and Q is determined by the first event that actually

occurs. The definition of choice can readily be extended to more than two
alternatives, e.g,,

4 Software Architecture Description 149

(x--~Ply-- , -QIz--~R)

Need to add is that alphabet must be consistent in prefLx and choice. For

example,a(x --~ P) must be equal to aP, that is, x E a P . And a(x--~ P [y--,.
Q) must be equal to aP, that is, {x, y}~__~_aP and aP = aQ.

State is added to a process definition through adding subscripts to the name of a

process. Pi is a process with a single state variable, i. For example,

P1 where Pi = count!i-~Pi-~

is a process that counts: count!l, count!2, count!3, etc.

Sometimes, however, a process is needed to have different behavior depending on

the value of its state variables. For example, we might want a circular counter that

counts to three and then resets: 1, 2, 3, 1, 2 A state dependency is introduced
with a conditional definition, written by adding a test on the state variables:

P~--Q, when P (V)

defines a process P over variables V only when the boolean expression P (V) is

true. Multiple alternatives are indicated by stacking them with a large curly-brace.

For example:

I c~ when i <23
P1 where P i=

count !i--~P1, otherwise

defines the circular counter.
Thus, we have introduced basic approaches for processes description, such as

prefix, recursion, choice and state. Actually we have a general expression to describe

all the processes with:

x : E - - ~ F (X)

In the general expression, the letter x is a variable denoting events. And the

letter E stands for a set of events. The set of events could be void (the process

STOP); the set could contain only one event (the simplest process described with
prefix) or several events (multiple alternatives). From all these expression introduced
above: prefix, recurs ion. . ., it is not difficult for us to discover that the process

description is very similar to grammars of formal languages. CSP is employed as
semantic basis of formal behavior description for WRIGHT for CSP provides
algebraic laws which allow process descriptions to be manipulated and analyzed and
all the descriptions are formal. So learning and mastering some theory on formal

languages and automata would help you to understand CSP more easily.
In the following section, we introduce the compound operations between

processes, including deterministic choice, non-deterministic choice and sequential

composition.
An important property of CSP for WRIGHT is its handling of choice. CSP

provides two forms of choice. The deterministic choice, called general choice or

150 Software Architecture

external choice, is very close to choice we have introduced in expression of process.
We use operator 1--] to describe such a choice. It is called external choice because the
behavior of the process is entirely determined by what the environment does. For
example,

PDQ

means that the environment can control which of P and Q will be selected, provided
that this control is exercised on the very first action. If this action is not a possible
first action of P, then Q will be selected; but if Q cannot engage initially in the
action, P will be selected. Take another choice with observed events as example, the
process

e---~P N f---~Q

is the process that will behave as the process P if it first observes the event e and
will behave as the process Q if it first observes the event f . In other words, the
choice is made according to what it observes. And the observation is the action of
environment, external, so the choice is deterministic. Deterministic choice is
typically made between observed events, and is usually described using the operator
" D " . However, if the In:st action is possible for both P and Q, then the choice P
E]Q is non-deterministic. If the observed event e and f are the same event, the
process does observe the event e but the event e cannot tell the process what to do
next step. We call that situation as non-deterministic choice.

If P and Q are processes, the notation

P N Q

denotes a process which behaves either like P or like Q, where the selection
between them is made arbitrarily, without the knowledge of control of the external
environment. So, we call this non-deterministic or internal choice. Similarly, take a
choice with initiated events as example for easily understanding, the process

e -~PNf - -~Q

is the process that will either output e and then act as P or output f and then act

as Q. That is, the process itself decides which to do, without consulting the
environment. Thus, non-deterministic choice is typically made between initiated
events.

It is difficult for CSP beginners to distinguish between the deterministic choice
and the non-deterministic choice. The distinction is really confusing. The confusion
is more clarified in WRIGHT because of initiated and observed events. The authors
of WRIGHT regards that this distinction is the key to the description of certain
critical properties of architectural interactions. These properties include the ability
to characterize the dynamic behavior of inter-component communication, to specify
which components are responsible for making decisions during interaction, and to
detect mismatched assumptions that could cause a component to get " s tuck"

4 Software Architecture Description 151

midway through its interaction with another component. Because of those reasons,
we will discuss the differences between them in section concerning validating
description from other aspects.

We have mentioned that if P and Q are processes, it is syntactically incorrect to
write P -+Q. Actually, we use sequential composition to express sequencing of two
or more different processes, using the operator ";". P ; Q is the process that
behaves as P until P terminates successfully and then behaves as Q. For example,

(e-~ f--~ ~)--e--~ f---~g---~ 5 7

If P never terminates successfully, neither does (P ;Q). That is, if the process P

does not terminate, then P ; Q acts as P forever.
In order to make process more flexible, the choice and sequential composition

operators can also be quantified over a set

(o p) > x : S " P (x)

This operator constructs a new process based on a process expression and the
set S, combining its parts by the operator (op) . And its form is very similar to the

general expression of process we have introduced before. For example,

if]i: { 1 , 2 , 3 } �9 P, = P 1 D P z [-]Pa

It is more complicated when the sequencing operator ' ; ' is used. In such

situation, we must take into account the fact that it is not symmet r ic (P ;Q :/: Q;
P). The meaning of quantification over sequence is some unspecified sequencing of

the processes:

(; x : S �9 P (x)) = (N x : S " P (x) ; (; y : S \ { x } �9 P (y)))

Thus,

(: i : { 1 , 2 , 3 } �9 P (x)) = (P ~ ; P z ; P 3) N (P 1 ; P 3 ; P 2)
[--](P2 ;P1 ; P3)[--](P2 ;P3 ; P1)
N(P3 ;P1 ; P z) N (P 3 ; P z ; P l)

Combine with the three compound operation between processes and replace the
op erat or (op) by three forms accordingly:

([--]x : S �9 P (x)) indicates an external choice between different P (x) ;
(N x : S ~ P (x)) indicates an internal choice between different P (x) ;
(; x �9 S ~ P (x)) indicates the execution of all of the different P (x) in some

order.

4 . 3 . 4 . 2 Example

Review the example on simple procedure-call connector we show in Section 4.3.1,

which introduces basic concept of component and connectors.
In our sample system (BM system), a Procedure-call connector (shown in Fig,4.

13) has a Caller and a Definer, and its glue coordinates the Caller and the Def'mer to
accomplish the procedure call, the actual interaction between the Bundle and the

152 Software Architecture

Framework. The informal description is as follows:

Connector Procedure-call
Role Caller [invoke function]
Role Def'mer [provide invoked function]
Glue [Caller invokes function of Definer; Definer returns the relevant results to Caller]

We all know that the above behavior specification is informal, which causes that

we do not confirm the coordination of Caller' s and Definer ' s behavior. We wonder

whether Caller will just wait and do nothing until it gets return from Definer. Such

problems are caused by ambiguity of natural languages; we hope to fix such

problems and specify the behavior of architectural elements precisely. We can
achieve these by employing CSP and all those notations we have mentioned.

Now we have the formal WRIGHT specification of this procedure-call
interaction as follows:

Connector Procedure-call
Role Caller = call--~return--~Caller F] w
Role Def'mer = call---~return--~Def'merD w
GLUE = Caller.call--~Definer.call

[-]D efiner.ret urn --~" Caller.ret urn--'- Glue
O w

We ignore data for simplif'mg our discussion here. There are some elements in
this specification worth noting, First, the two kind of different alternatives (choices)

adopted by the Caller and Definer actually indicate their different roles. As we

know, in a procedure call, the Caller decides whether to initiate a procedure call or
not, and so it uses the non-deterministic choice operator to indicate that the choice
is made by the Caller itself. The Definer, on the other hand, offers the option of a

procedure call, so it uses deterministic choice. It is up to the other parties (in this
case the Caller) to determine whether a call will occur or not, that is, the choice is

made by external. When we introduce the deterministic choice, we always claim that
the determination of the deterministic choice is dependent on environment. But the
"environment" is an abstract and confusing conception. From the above illustration

on different roles of the Caller and Definer, we might regard environment as other

processes participating the interaction or the system where the interaction occurs.

Second, the Glue of a connector describes how the participants work together to

create an interaction. Because the Glue mediates the interaction between multiple

participants, its specification must indicate which r o l e ' s event is indicated in any
situation. This is done by prefixing each event by the name of a role. So Callercall

indicates the Caller component executing the call, and Definercall indicates the

Definer coml~onent being notified of the call. The meaning is similar for
Defmerreturn and Callerretrun. In practice, these events actually occur

simultaneously in the software system, but for various technical reasons WRIGHT
considers all events in different roles to be distinguishable events.

Third, the Glue indicates how the behavior of the roles corresponds to form a
complete interaction. Each of the two main branches of the Glue process indicate

4 Software Architecture Description 153

how an event of one participant triggers another event in the other participant.
Where a role represents the behavior of a component, the Glue represents the
composition of different components. Thus, the Glue's use of initiated and
observed events is complementary to that of the roles: If a role initiates an event, it
is observed in the Glue. If a role is to observe an event, it must be initiated by the
Glue.

Thus, "Role Caller = call---~return--~Caller ~ w " indicates that the Definer will
observe a call event following its initiation by the Caller. "Role Definer = call---~

return--~Def'lner[--] w " indicates that the Caller will process a return following the

signal by Definer.
This particular glue structure, where an event initiated by one role (thus,

observed by the glue) is always echoed at another role, is quite common in
connector interactions. In fact, it is so common that many architecture description
languages do not permit any other form of glue. However, WRIGHT does not
restrict the kinds of interaction patterns that can be described to just this simple
class.

Why do we need two deterministic choices to describe the glue in our simple
example? What if we adopt the specification as follows?

GLUE -- Cal i er .cal i-~ Define .cal i-~ Def iner .r eturn-~ Cal i er .r eturn-~ G1 ue I--I

Do the two glues work in the same way? The answer is no. The second
specification of Glue indicates that the event Definer.return is immediately after the

event Definer.call, and the process Glue can not engage any other events in this
interval. But the first specification of Glue allows it to engage other events because
it uses the choice operator. In practice, the first description is more flexible and
robust compared with the second one, because it allows the process Glue to engage
in events in more flexible way.

4 . 3 . 4 . 3 Parallel Composition and Configuration Behavior

We have known that behaviors are specified by combining events into certain
patterns called processes. In practice, there is a process description for each element
in a WRIGHT configuration for a system, such as for each port, role, computation
and connector glue. Of these, the port and role specifications represent the
interfaces to the components and connectors, while the computation and glue
represent the overall, complete behavior of the components and connectors,
respectively. How these distinct processes work together to define the behavior of
the configuration? Could they help us to determine whether the configuration
contains inconsistencies? Inconsistency means the system cannot operate correctly.
Now we focus on these questions above.

Le t ' s start with the simplest situation: two process work together. When two
processes are brought together to evolve concurrently, the usual intention is that
they will interact with each other. These interactions may be regarded as events that
require simultaneous participation of both the processes involved. We call this kind
of compositions as in terac t ion when the alphabets of the processes are identical.

If P and Q are processes with the same alphabet, CSP uses the notation

154 Software Architecture

PI IQ

to denote the process which behaves like the system composed of processes P and
Q interacting in lock-step synchronization as described above.

For example: assumed that aP--aQ �9
(c--~P) II (c * Q) = (c ~ (P II Q))
(c---~P) II (d--~Q) = STOP if c:~d

The general formalization:
(x:A---~P(X)) 1] (y : B - - - ~ Q (y)) = (z : (A A B) - - - ~ (P (z) II Q (~))
Furthermore, the operator described in the previous section can be generalized to

the case when its operands P and Q have different alphabets: aP=/=aQ.
When such processes are assembled to run concurrently, events that are in both

their alphabets (as explained in the previous section) require simultaneous
participation of both P and Q. However, events in the alphabet of P but not in the
alphabet of Q are of no concern to Q, which is physically incapable of controlling
or even of noticing them. Such events may occur independently of Q whenever P

engages in them. Similarly, Q may engage alone in events which are in the alphabet
of Q but not of P. Pay attention to that the rules are different from the identical
alphabets, and we call it concurrency rather than interaction. Eventually the set of
all events that are logically possible for the system is simply the union of the
alphabets of the component processes

a(P II Q)--aPUaQ

Let af t (aP- -aQ) , b E (a P - - a Q) and {c, d}~____(aP AaQ). The following
laws show the way in which P engages alone in a , Q engages alone in b, but c and
d require simultaneous participation of both P and Q.

(c---*P) 1] (c--~Q)=(c---~(P]l Q))
(c--~P) [[(b - - ~ Q) = S T O P if c:/::d

These two laws are exactly the same with the former situation. Read the
following laws and analyze the difference:

(a---~P)]] (c--~Q)--a-~(P l] (c---~Q))
(c--~P) 1] (b--~Q)--b-~(Q]1 (c--~P))

Given a general understanding of parallel composition, we introduce
configuration behavior via a sample system. The system, shown in Fig,4.22, contains

two components and a connector. The component A will engage in the event a some
number of times and then decide to terminate. The component B is capable of
executing the event sequence < c, b> any number of times, or terminating, B will
execute b whenever it observes c. The connector C is responsible for ensuring that
whenever a occurs, c follows. Thus, for each a, the connector transmits a c, and this
triggers a b event in B. The overall effect should be that there will be exactly one b
for each a. This models a kind of connector where one component triggers a
particular behavior in another component; for example, the reaction from one
component to the receipt of a message from another component.

4 Software Architecture Description 155

c _1 B I
{a} {a,b} "-] {a,b}

Fig. 4 .22 The ABC system

The processes for the components and the connector are described as follows"

A=--d--~Aw

c = a ~ - ~ c E] w
B = ~--,.~-,..BI-I w
a A = {a} ,aB z { b , c } , aC~-- {a ,c}

According to the system structure and the three processes above we can make an

actual WRIGHT configuration description formally.
Conf iguration ABC

Component A-type
_

Port Out---- a-~Out ~

Computat ion-- Out. a-~ Computat ion ~

Component B-type

Port In---- c-~ InD

Computation-- In. c-~b-~ComputationD

Connector C-type
_

Role Origin-- a-~Origin ~

Role Target---- c-~Target [-7

Glue= Origin. a-~Target, c-~Glue~]

Instances

A �9 A-type

B : B-type

C: C-type

Attachments

A. Out as C�9 Origin

B. In as C. Target

END ABC

Now, we come to the first question we have brought up before: How these
distinct processes work together to define the behavior of the configuration?
Basically, we combine the behavior specifications of each instance of an architectural
element in the system via parallel composition. That is, there will be a process for
each component instance and one for each connector instance. Then we have to face

two new difficulties.
As we know, behavior specifications in the configuration are associated with a

type, not an instance. But we need a process associated with each instance.
Meanwhile, the types ' specifications are context-independent: How can the

attachment declarations ensure that the right interactions take place? If we look at
the way behaviors are specified in a component's Computation and a connector's
Glue, none of the event names match up. The Glue will refer to an event with a role

name, and the Computation will refer to it by a port name.
WRIGHT uses two different kinds of renaming functions to solve the two

problems above. The first kind is called labeling functions, which add the names of

156 Software Architecture

the instances to each event name. Thus, an instance of the A- type named A would

refer its events with name A: A. out.a. Relying on such approach, even multiple
instances of a type will never cause confusion.

The second kind called attachment functions matches up the names of attached
ports and role. Consider such an attachment declaration in:

A. Out as C. Origin.
In fact, A. out.a should be the same event as C. origin.a, although in different

perspectives (described in process for different components) which makes that one
is initiated and the other is observed. To achieve this, WRIGHT uses attachment
functions to make sure that all of the events for the Out port in the A computation
match up with the events from the Origin role of the C glue. The definition of
attachment functions is as follows: (Allen, 19970)

Definit ion For any names N , N ' , M , M ' , not necessarily distinct,
7" ! ~ Ar ! ! " o I

(N , M) (e) = / l v . l v l . e 1 T e = N . M . e
R (N ' , M ') , e otherwise

And WRIGHT defines a configuration behavior as follows"
Definit ion (Configuration Behavior) If a configuration declares component

instances CpI �9 Cp T1. . . Cp , : Cp T , , where each compon.ent type Cp Ti has
computation process C p P i , connector instances Cnl . CnTI . . . Cnm . CnTm, where
each connector type CnTi has glue process C n P i , and attachment declarations with
attachment functions R 1 . . . Rk, let R = R1 �9 . . . �9 Rk.Then the behavior of the
configuration is the CSP process

G [I ([I i : l . . n . Ri :Pi)

In this definition, Cp, : C p T , means Cp, is an instance of the type Cp T , , the

same as the notation is used in instances declaration. R - - R 1 �9 . . . ~ Rk indicates
that the attachment functions are composed to form a single function. Recall that
the definition of the attachment functions makes it a total function over events, but
that only the relevant events (of the specific role on the connector) are changed by
the definition. The requirement that all connector names be unique and all roles be
attached to at most one port ensures that there will be no conflicts when composing
attachment functions in a configuration.

An alternative explanation of expression above with human easily acceptable
language is that configuration behavior is parallel composition of all computation
processes of components and all glue processes of connectors. Generally speaking,
computations (the actual jobs of components) and glues (the coordination for
interactions) work together to represent the running of a system. In addition, we use
renaming functions to avoid confusions and conflict ions . Finally, we get the
configuration behavior of the sample system as follows:

A = A. Out.a---~A w

[[C - - A . Out.a---~B. In.c---~C[-~ w

[B = B. In.c--~B. b--,.Br-] w

4 Software Architecture Description 157

4 . 3 . 4 . 4 Validation

In fact, we most concern whether the configuration contains inconsistencies, that is,

whether the system would work incorrectly. WRIGHT realizes validation for
system by employing CSP as its semantic basis of formal behavior description.

First of all, we introduce the non-deterministic process model of CSP. Formally,

a CSP process is modeled as a triple (A, F , D), where A is the process ' alphabet,

F is its failures, and D its divergences.
The failures of a process as such a relation (set of pairs):

failures(P)= {(s, X) l sC traces(P)A X C refusals(P/s)}

Before understanding the conception of failures, we have to understand the

conceptions of trace, traces and refusals. A trace of the behavior of a process is a

finite sequence of symbols recording the events in which the process has engaged up
to some moment in time. A trace will be denoted as a sequence of symbols,

separated by commas and enclosed in angular brackets. And the complete set of all

possible traces of a process P can be known in advance, and CSP defines a function
t races(P) to yield that set. The process P = a---~ P Db---~ P , for example, can

generate the traces < > , < a > , < a , a > , < a , b > , < b , a > , etc. And the

entireset of traces is indicated by Traces(P). Traces(P) = { < > , < a > , < a ,
a > , < a , b > , < b , a > ,--- } and it is a infinite set.

Now we focus on the definition of refusals. In general, let X be a set of events
which are offered initially by the environment of a process P, which in this context

we take to have the same alphabet as P. If it is possible for P to deadlock on its

first step (that means any event in X can not be engaged in by process P for

initiation.) when placed in this environment, we say that X is a refusal of P . The
set of all such refusals of P is denoted refusals (P) . In addition, we have an

extensional definition that the refusals of the process P after trace s is denoted

refusals(P/s). Note that each element of refusals is a set of events.
We review the definition after the relevant basic introduction: If (s, X) is a

failure of P , this means that P can engage in the sequence of events recorded by s,
and then refuse to do anything more, in spite of the fact that its environment is
prepared to engage in any of the events of X . Generally speaking, failure describes

those traceS the process P can generate and how (what environment the process is

placed in) the process P will deadlock after those traces.
A divergence of a process is defined as any trace of the process after which the

process behaves chaotically. The set of all divergences is defined

divergences(P) = {s lsE traces(P) A (P / s)E CHAOSoe }

The process CHAOS is termed divergent because it is the most unconstrained,

unpredictable process: It can either refuse or accept any event at any time. The past

behavior of the process is no help in predicting its future behavior, and it is defmed

as follows:

158 Software Architecture

CHAOSA = STOP ~(7q x : A �9 x---~CHAOSA)

As its definition, divergences record the traces a certain process can generate, and
the process turns unpredictable after those traces. Hence, divergences are used to
represent catastrophic situations or completely unpredictable programs (such as
those containing infinite loops without any communication events). Obviously, we

hope that our system configuration do not contain such divergent processes.

As a formal specification language, WRIGHT has value beyond enabling
architects to write down an architectural description. Another important aspect of
the language is its support for analysis and reasoning about the described system.
And such analysis and reasoning, as analysis of consistency and completeness is
based on the processes model, supporting by CSP.

Consistency and completeness are two criteria for an architectural description
that under all of these analyses. Informally, consistency means that the description
makes sense; that different parts of the description do not contradict each other.
Completeness is the property that a description contains enough information to
perform an analysis; that the description does not omit details necessary to show a
certain fact or to make a guarantee. Thus, completeness is with respect to a
particular analysis or property.

The WRIGHT tests concerning analysis of consistency and completeness are
summarized in. In parentheses, we have indicated the containing language construct
in configuration to which each test applies. And we discuss connector deadlock-free
as emphasis.

�9 Port-Computation Consistency (component)
�9 Connector Deadlock-flee (connector)
�9 Roles Deadlock-free (role)
�9 Single Initiator (connector)
�9 Initiator Commits (any process)
�9 Parameter Substitution (instance)
�9 Range Check (instance)
�9 Port-Role Compatibility (attachment)
�9 Style Constraints (configuration)
�9 Style Consistency (style)
�9 Attachment Completeness (configuration)

Fig. 4.23 Smamaary of WRIGHT test

A connector describes an interaction between components, and proclaims rules
of an interaction. As we know a connector specification contains description of
roles and glue. The roles indicate the expectation for any component participating in

a certain interaction while the glue establishes the rules for roles and coordinates the
roles to accomplish an interaction accordingly. Thus, the connector description must
ensure that the coordination of the glue is consistent with the expected behavior of
the components, as indicated by the roles. Otherwise, the specified interaction will
crash and the system will eventually collapse.

Suppose that the specification of procedure-call connector changes in our BM

4 Software Architecture Description 159

system. The Caller works as before but it must receive an initialization signal before

it can deal with invoking. The new specification could be as follows:

Counec to r Procedure-call

Role Caller= call--~returndCallerN w

Role Definer = initialize-"call---"return----Definer[--] w

G L U E = Caller.initialize----Definer.initialize

El] Caller.call --~ Define.call

Vq Definer.return----Caller.return--"Glue[--] w

The BM sys tem will face fatal disaster if the specification changes: The Caller

initiates the event call and wait for return; the Defmer calling for the event initialize

completely neglected call event. Thus, the Definer might simply ignore the Caller,
leaving it stranded waiting for a return value. Such a crash is shown in Fig.4.24.

Fig. 4.24 The deadlock between Caller and Def'mer

Such problem that participants in an interaction cannot agree on the next

appropriate event can be detected as deadlock by employing CSP. A CSP process is
said to deadlock when it may refuse to participate in (engage in) all events, but has
not yet terminated successfully (by participating in the w / event). Obviously, we
demand that all processes are deadlock-free. A process is deadlock-free means it can

never get into a deadlock situation; WRIGHT has such a definition as follows:
(Allen, 1997b)

Definition (Deadlock-Freedom) A process P = (A , F , D) is deadlock-free if

for every trace t such that (t , A) 6 F, last (t) = , , / .

From such a definition, we can know that a deadlock-free process must always

either be willing to continue its computation or eventually engage in successful

160 Software Architecture

termination(w : .,/--~ STOP).

Now we can detect whether a connector is deadlock-free based on the definition
above.

Test 1 (Connector Deadlock-free) If a connector has glue G and roles R 1 . . . Rn

with processes P 1 . . . P~, then the process G II < II i= 1 . . n �9 R i . P i) must be
deadlock-free.

As we know, the roles are used as stand-ins for the components (participations
in an interaction). Thus, if the process (the parallel composition of roles and glue)

will deadlock, the components and the connector will conflict in the interaction.
Equivalently the system will face the inconsistency problems.

Another kind of inconsistency is also detectable as deadlock: if a role
specification is internally inconsistent. In a complicated role specification, there may

be errors that lead to a situation in which no event is possible for that participant,
even if the Glue is willing to take any event. Thus we employ the following test to
avoid that a role deadlocks itself.

Test 2 (Roles Deadlock-free) Each of the roles in a connector must be deadlock-
free.

In addition, if the Glue deadlocks then the parallel composition of the Glue with
its roles will deadlock, and therefore Test 2 is sufficient to check internal Glue
consistency. That means we do not need an exact test to test whether the glue is
deadlock-free.

The validation seems very complicated in computation for human-beings.
Fortunately, a number of tools for analyzing and understandingsystems described
with CSP have been developed. The most well-known CSP is FDR2 (Failures-
Divergence Refinement 2), which is a commercial product developed by Formal
Systems Ltd. FDR is a model-checking tool for state machines, with foundations in
the theory of concurrency based around CSP. (FDR, 2005) For example, FDR2
automates the test of whether one process refines another. A process P refines a
process Q (written Q 2 P) if the behaviors of P are consistent with (but possibly
less general than) the behaviors of Q. And refinement is the key relationship
employing in the test for port-computation consistency. Besides, FDR2 can also
process the connector deadlock-free test we mentioned above. Other CSP tools
include ARC (Parashkevov, 1996), Casper (Lowe, 1997) and so on.

4 . 4 FEAL: An Infrastructure to Construct ADLs

4 . 4 . 1 Design Purpose

As we introduced before, there are many Architectural Description Languages
(ADLs) designed for various domains and varied purposes. But most of them do not
concern issues about reuse and extensibility, which lead to the unnecessary overhead
to develop new ADLs or add new features to existent ADLs. Therefore, the

4 Software Architecture Description 161

corresponding tools have to be redesigned and implemented to follow A D L ' s
changes. To address this problem, we develop Foundation of Extensible Architecture
Language (FEAL). It solves the problem by providing an infrastructure to construct
ADL ' s various notations. Through mapping ADL notations to FEAL-counterparts,
extra ADL facilities can be added rapidly. Based on FEAL, a proto type system,
which is an extensible visible architecture'development tool, is created to support
any FEAL-compatible ADLs. This costs much less effort in research of software
architectural description and improves ADL' s practical application.

Foundation of Extensible Architecture Language (FEAL) defines a set of
descriptive abstractions, a referenced structure and a mapping mechanism. In this
section, we address these issues in detail.

4 . 4 . 2 FEC

All ADLs define the notations which are used as the basic vocabulary for
description. Some of them are unique, while others seem common or even identical
in appearance. To unify the unique elements, their expression foundation should be
finger out. For example, some ADLs provide information such as version and service
ID that facilitates check of components assembly. Some ADLs support variables
that can get value dynamically. Therefore, we abstract Property to meet these
requirements. Property is a simple key-value pair, which can attach a formal
expression to indicate the computation rules or constraints.

For the common ones, they essentially may be semantically different. The most
famous example is component, which is defined in almost every mainstream ADL.
Unfortunately, they may be related, but not always identical. Some components
mean the computation unit existing only during runtime. Some indicate the binary
reusable software package that can be imported in static design phase. Some
components distinguish types and instances, while others not. In this concern, we
need to clarify the intents of users rather than focus on the name itself. In FEAL,
we define Entity, Type and Instance for describing the notations such as
component. In this case, the real meaning of component is controlled by FEAL
mapper.

According to the investigation of several popular ADLs, we defme ten kinds of
FEAL elements, named FEAL Element Categories (FEC). They are abstractions of
architectural notations' meaning We specify them as follows:

�9 ViewModel: a collection of elements which represents an architecture model.
A ViewM odel contains a series of other FEAL elements and the configuration

o f them. ViewModel can also have input parameters. The WRIGHT notation
"Configuration" and the ACME term "Style" are suitable to be mapped into
ViewModel.

�9 Container : Container is a vessel for other single FEC elements (including
Container itself). Container set for a specific FEC is denoted as Container
{FEC} in this article.

�9 Ent i ty : Entity is an element that needs no type/instance support. This is

162 Software Architecture

special useful in quick architecture modeling when type/instance concepts will
trigger too much unnecessary footprint, such as the ones that is possible to

be used only once.
�9 Type: Type is a special kind of Entity aiming to support reuse and

consistent check. Upon it, we can define component type, connector type,
port type, service type or whatever the like. Meanwhile, Type is also fit for
the static design model whose elements will be referred in the runtime model.
Besides that, several features of Type are different from normal Entity, such
as type inheritance or export and import (Some ADLs support multiple
description files with elements cross references which are similar to
programming language). These special points yield special concerns. We

assume that Type can only be singly inherited.
�9 Instance: Instance is a special kind of Entity that has to instantiate some

Type elements.
�9 Proper tyType: Some Type elements want to specify the properties t o b e "

filled in their instances. Proper tyType is a set of properties which limit its
instance's value. In PropertyType, you can define the base type, such as
"integer", "double", "date" and "string", or mark the value as read only or
optional. We assume that one Proper tyType element cannot inherit another.

�9 Proper ty : Property is a simple key-value pair keeping simple information
records. The value can be a variable that can be calculated or constrained
during runtime analysis through sub- SCRIPT element. Property can be
instantiated from a PropertyType or exists independent. The reason for that
no "Propertylnstance" exists is a design trade off in FEAL implementation.

�9 L ink: Link indicates the relationship among other elements, especially the
ones of Entity, Type and Instance. A collection of Link elements means a
configuration where various elements are bound together. Noticeably, never
mix up elements of Link and "connector" which should be categorized as an
Entity, a Type or an Instance.

�9 Scr ipt : Some ADLs employ script to express behaviors, constraints or
calculation rules. They are often coded in the format of process algebras, logic,
or even self-defined ffarmmr (Shown in Fig4.25). Script needs distinguishingly
concerns in that they are different in parsing and have capability of execution.
In our prototype system, all FEC elements can be recognized and visualized

except Script which calls for grammar specific parser.
�9 Comment : A section of descriptive annotation assisting reading and learning.

script RestoreStandard
in a: Account
prv i: record (c:Customer; co:VIP)
for i in match {c:Customer; co:VIPlco(c,a)} loop
remove i. co;
create standard(i.c, a);
end loop

end script

Fig. 4 .25 A script of Rapide

4 Software Architecture Description 163

When developing a new ADL, the concepts and terms in its vocabulary are
mapped into one of FEC.

4 . 4 . 3 FEAL Structure

FEAL does not want to cover every ADL. This will lead to excessive overhead
counteracts what it brings about by putting too much uncertainty and complexity
that force the users to drop it. FEAL only deals with FEAL compatible ADLs
which means they have to follow the structure of FEAL. More concretely, ADL
notations should be arranged as a tree and follow several rules. We present these
rules by regular expressions as Fig,4.26 shows, which limits the legal sub-FEC for
each kind of elements. These rules does not hurt FEAL~ s generality in that you can
always find felicitous representation in expressing something.

Several rules should draw much attention: First, the FEAL ROOT should
contain only a container of ViewMode! and optional properties prepared for meta
information. In order to follow it, all definitions for Type, Instance and Entity
elements need to be enclosed within elements of ViewModel. On the one hand, we
expect to set scope to perform access and cross reference control for non-
ViewModel elements. For realization of global Type, Instance or Entity definitions,
you can define a ViewModel with global scope when implementing~ On the other
side, we hope that elements within a single ViewModel can be rendered in one view
in the FEAL-based architecture modeling tool. Prohibition of global non-ViewModel
elements helps reduce complexity.

FEAL ROOT = C { P } ? C { VM }

VM= C(T} ?C{I} ?C{E} ?C{P} ?C{L} ?C{C} ?CO?ID

T= C{T} ?C{ I} ?C{E} ?C{PT} ?C{P} ?C{L} ?S?CO?ID REFID

I = C{ I} ?C{E} ?C{P} ?C{L} ?S?CO?ID REFID

E = C{ I} ?C{E} ?C{P} ?C{L} ?S?CO?ID REFID

P = C{P} ?S?CO?ID Value

PT= C{PT}?C{P}?S?CO?ID

CEFEC] = FEC
REFID = ID

ID= ([a - z-I I I -A - z-l I [- 0 - 9-I) +
Value = String I Digital

Symbol : C : Container, VM : ViewModel, T :Type, I : Instance, E :Entity,

P : Property, PT �9 Propertytype, L : Link, S : Script, CO : Comment

Fig. 4 .26 FEAL structure

Another rule needing particular concerns is the one for Type. This is the
principal difference between Type and other FEC that it explicitly considers the
needs of sub-Type and Proper tyType def'mition, the latter of which permits only
sub-Proper tyType elements. With the nested Type structure, you have a chance to
eXpress such as an interface type of a component type. Sometimes, a Type requires
sub-Proper tyType when it expects to prescribe its instances' properties.

Finally, look at the REFID equipped with Type, Instance and Entity, which

means a valid id of existent ViewMode! elements. This is prepared for the
hierarchical structure. For example, in some ADLs a component or connector may

164 Software Architecture

expand its internal structures for
inspecting or analysis. In this
situation, the internal structure

should be modeled in a separated
ViewModel element as shown in
Fig, 4. 27, which can be referred
elsewhere when necessary. Another
case of adopting is the fill of
architectural style or pattern. It is

different from hierarchical structure

J
I.

ViewModel 1 /

S

ViewModel 2

Fig. 4 . 2 7 ViewModel reference indicating

component ' s internal structure

requiring only a reference in that it needs parameters that can be handled by
properties. Although REFID can also be expressed in Property element, it is used in
several situations and hence we extract it from regular properties.

To employ FEAL in supporting existent ADLs which are not FEAL-compatibie,
you should first reorganize its structure. Our experiments show that this change will
not hurt tested ADLs' expressive capability.

4 . 4 . 4 FEAL Mapper

The primary target of FEAL is to contribute in building an extensible architecture
modeling system. When getting a FEAL-compatible ADL, the next step is to map
A D L ' s terms into some FEC, which is achieved by FEAL Mapper.

FEAL Mapper has a series of map records which are listed in sequence, each of
which access two issues. The first one is ADL-FEAL mapping. FEAL or FEAL-
based architecture modeling tool do not understand the meaning of FEAL-compatible
ADL. Hence, it is the ADL developer 's responsibility to indicate that which term
should be mapped to which FEC.

The second one is modeling tool related. FEAL mapper needs to tell FEAL-
based ADP how to handle a specific ADL notation, such as how to shape it, how to
fill the background color, how to decorate the line with certain end point styles,
whether to attach one shape to certain location of another, and whether it can be edited.

FEAL Mapper offers the chance that a user can fine tune the appearance when
FEAL-based ADP handles certain FEAL-compatible ADLs, which normally needs

to change the source codes and rebuild the tool. It is easy to edit and chang e in that
you can use any text editor to achieve this task.

4 . 4 . 5 Examples of FEAL Application

In this section, we give two examples to indicate how to use FEAL in ADL creation.
The first one is modified WRIGHT through which we will show how to use FEAL
Mapper to convert notation of WRIGHT to FEAL FECs. The second one is our
ADL, mADL, in which we want to add a physical view to analyze its performance
affected by physical elements.

�9 WRIGHT(Allen, 1997b)
In a conclusion, WRIGHT ' s primary notation includes:

4 Software Architecture Description 165

Configuration, a wrapper of a system model, which contains all other definitions;
Component, a collection of Port and one Computation definition, where the

former indicates a component ~s interface and the latter defines what a component
does exactly with CSP script or nested sub-Configuration;

Connector, similar to Component, contains its several interfaces Role and Glue
to describe all the roles' internal relationship;

Instances, declares the instances based on Component and Connector types
defined before;

Attachments, binds all instances together;
Interface Type, a CSP definition which can be used as the type of Port or Role;
Bindings, available only when hierarchical description exists, indicates the

communication relation between two layers;
Constraints, a formal description to indicate the valid situation of its enclosing

element;
Style, a configuration template that has several parameters.
Here is the map table between WRIGHT notations and FEAL description:

Table 4.1 Map from WRIGHT to FEAL

WRGITH Notations FEAL WRGITH Notations FEAL

Role (Def'med by
Configuration ViewM odel Instance

Interface Type)
Component Type Glue Script
Connector Type Bindings Container of Property

Entity with
Port (Defined by CSP) Instances Container of Instance

Script

Port (Defined by Ins tance Attachments Container of Link
Interface Type)
Computation (Defined
by CSP) Script Interface Type Type with Script

Computation (Defined
by hierarchical
Configuration)

Role(Defined by CSP)

refer to
another
ViewM odel

Entity with
Script

Constraints

Style

Script

ViewModel with Property
as parameters and Script as
constraints

What should be noted is that we have to slightly modify the grammar of
WRIGHT to make it FEAL-compatible before mapping. On the one hand, the
structure such as hierarchical Configuration should be alternated by referred top-
level Configuration to meet the need of ViewModel; on the other hand, several
notations adopt different expressions in different situation, such as Computation,
Port and Role, which requires special marks in the modified WRIGHT to indicate
what it. is exactly. From the table we can see that the slightly modified WRIGHT
can be easily converted to FEAL representation without losing its expressive

capability.
�9 mADL

mADL is the ADL written in XML aiming at modeling the mobile distributed

166 Software Architecture

applications which is used in our institute internally. We change it very frequently
to allow explorative research. The great effort consumed in the development of its
tool is a research to compel us to start the project FEAL. We give an example of
modification of mADL' s features.

Originally, mADL supports a runtime model comprised of several components
and logic connectors through which the system is considered as a whole with no
concerns about applications' physical devices and wireless network. When
performance becomes the main aspect needing more attention, we want to add a
physical view to estimate the overall latency by providing the computation or
transfer speed of each individual physical elements. In this regard, we create several
new tags for physical elements and put the performance parameters into Container
of Property. Some properties depend on others, such as the transfer speed of a
device is decided by the maximal value of the speed of network and itself. FEAL
supports this point by Script-based Property. By FEAL and a FEAL-based ADP 1,
we took just one day to finish the new edition of mADL and its mapper. Then we
concentrated on the module responsible of performance calculation for another week.
This task would be terrible if without FEAL in that we have take three or four
weeks to redesign the data structure, complement the serialization and render
modules and finally test the system.

4.5 Summary

In this chapter, we focus on software architectural description, the important part
of software architecture. We have discussed the problems with informal description
of software architecture; and illustrated the necessity of employing formal methods.

ADL is a hot issue in research of software architecture. Because it is difficult to
make the precise definition of ADL, we briefly introduce design purposes and basic
elements of some ADLs. And we present a comparison among some classic ADLs
based on description capability; those ADLs include ACME, C2, Darwin, KDL,
WRIGHT, xADL, rt-ADL.

WRIGHT is a successful ADL in describing architectural behavior. We have
introduced its syntax and semantics in detail, especially its semantic basis of formal
behavior--CSP. Eventually we introduce our relevant work--FEAL; this work is
still in process and we will adjust the syntax and semantics to achieve improvement
in the future work.

1 Architecture Development Platform, an integrated tool to provide general architecture modeling
functions

4 Software Architecture Description 167

References

(Abrial, 1980) Abrial, J.-R., Schuman, S. A. & Meyer, B. A Specification Language,
in on the Construction of Programs: Cambridge University Press.1980.

(Abrial, 1996) Abrial, J.-R. The B-Book: Assigning Programs to Meanings:
Cambridge University Press.1996.

(Alhir, 2003) Alhir, S. S. Learning Urn/: O'Reilly.2003.
(Allen, 1997a) Allen, R. & Garlan, D. A Formal Basis for Architectural

Connection, ACM Transactions on Software Engineering and Methodology
1997a(6): 213-249.

(Allen, 1997b) Allen, R. J. A Formal Approach to Software Architecture. In: CMU
SEI, p. 236. CarnegieMellon University.1997b.

(Bergstra, 1987) Bergstra, J. A. & Klop, J. W. Acp: A Universal Axiom System for
Process Specification. CWI Quarterly 1987(15): 3-23.

(Booch, 2005) Booch, G., Rumbaugh, J. & Jacobson, I. Unified Modeling Language
User Guide, 2nd ed.: Addison-Wesley Professional.2005.

(Brookes, 1984) Brookes, et al. A Theory of Communicating Sequential Processes.
ACM.1984.

(Cardelli, 1998) Cardelli, L. & Gordon, A. D. Mobile Ambients. Proceedings of the
First international Conference on Foundations of Software Science and
Computation Structure.1998:140-155.

(Dashofy, 2005) Dashofy, E. M., Hoek, A. v. d. & Taylor, R. N. A Comprehensive
Approach for the Development of Modular SoftwareArchitecture Description
Languages. ACM Transactions on Software Engineering and Methodology
2005(14): 199-245.

(FDR, 2005) FDR. Failures-Divergence Refinement-Fdr2 User Manual, 6th ed.:
Formal Systems (Europe) Ltd.2005.

(Fitzgerald, 1973) Fitzgerald, J. Validated Designs for Object-Oriented Systems:
Sp ringer Verlag. 1973.

(Garlan, 1997) Garlan, D., Monroe, R. & Wile, D. (1997). Acme: An Architecture
Description Interchange Language. Proceedings of the 7th Annual IBM Centre
for Advanced Studies Conference (Cascon'97). Toronto, Ontario.

(He, 2005) He, J., Qin, Z. & Jia, X. An Ontology-Based E-Commerce Knowledge
Description Language. Acta Electronica Sinica 2005(33): 297-300.

(Hewitt, 1973) Hewitt, C., Bishop, P. & Steiger, R. A Universal Modular Actor
Formalism for Artificial Intelligence. IJCAI.1973.

(Hoare, 2004) Hoare, C. A. R. Communicating Sequential Processes: Prentice-Hall
International.2004.

(Larman, 2004) Larman, C. Applying Urn/ and Patterns: An Introduction to
Object-Oriented Analysis and Design and Iterative Development, 3rd ed.:
Addison Wesley Professional.2004.

168 Software Architecture

(Lowe, 1997) Lowe, G. Casper: A Compiler for the Analysis of Security
Protocols. 1997.

(Magee, 1995) Magee, J., et al. Specifying Distributed Software Architectures.
1995.

(Medvidovic, 2000) Medvidovic, N. & Taylor, R. N. A Classification and
Comparison Framework for Software Architecture Description Languages.
IEEE Transactions on Software Engineering 2000(26): 70-93.

(Milner, 1980) Milner, R. A Calculus of Communicating Systems, Springer-Verlag.
1980.

(Oquendo, 2004) Oquendo, F. II-Adl : An Architecture Description Language
Based on the Higher-Order Typed H-Calculus for Specifying Dynamic and
Mobile Software Architectures. ACM SIGSOFT Software Engineering Notes
2004(29): 1-14.

(Parashkevov, 1996) Parashkevov, A. N. & Yantchev, J. Arc-a Tool for Efficient
Refinement and Equivalence Checking for Csp. 1996.

(Petri, 1962) Petri, C. A. Komunikation Mit Automaten. University of Bonn.1962.
(Pressman, 2006) Pressman, R. S. Software Engineering: A Practitioner's Approach,

6th ed.: McGraw-Hill 2006.
(Sangiorgi, 2001) Sangiorgi, D. & Walker, D. YhelI-Calculus: A Theory of Mobile

Processes: Cambrige University Press.2001.
(Shaw, 1996) Shaw, M. & Garlan, D. Software Architecture: Perspectives on an

Emerging Discipline led.: Prentice Ha11.1996.
(Taylor, 1996) Taylor, R. N., et al. A Component- and Message-Based

Architectural Style for Gui Software. IEEE Transactions on Software
Engineering 1996(22): 17.

Design Strategies in Architecture Level

Design is an activity that gives tradeoff solutions to meet specified requirements.
Design for software can be split into several processes with respect to various
concentrations, among which architecture design is a crucial step, deciding whether
the requirements can be met to a great extent.

In the Chapters 2 and 4, we have accessed the issues about architectural
description. Through reading that you get the ideas about which elements are
necessary to give complete information about architecture, as well as how to
manipulate them to express the structures, relationships and behaviors. But, the
question is how designers or architects start this description work. Design is always
started from requirement specifications. Therefore, the key point is how to link
some requirements to some architectural decision, such as creation of components
and connectors with special features, adoption of architectural styles and patterns
upon which the design will be built up, and establishment of communication
protocols through which the whole system can be integrated.

The links between requirements and designs are design rules, accumulated and got
agreement after couple of years ' experience. Design rules in architectural level have
got its concrete position since the importance of architecture drew the publ ic ' s
attention. Normally speaking, several designs, via different design rules, can be
gained in different perspectives, which, thus, lead to a problem that how to choose
the best one. In practice, this job is performed by architecture evaluation, accessed
in Chapter 7 in detail. Evaluation is essentially a conference with stakeholders
involved, including advising, discussing, debating, information tracking and analyzing,
all of which are mainly based on participators' experience. Nevertheless, several
regular metrics can be extracted to allow the semi-automatic or even automatic
design. These metrics, the formal expression of rules of design and selection, can be
put into a knowledge repository, achieving the expert system in software design.
Design space is the intuitive tool to handle the metrics problems.

In this chapter, we will focus on design guidance through design space and rules,
as well as the design processes along with them.

170 Software Architecture

5 . 1 From Reuse to Architecture Design

Currently, reuse is not a new concept for its popularity. Through tremendous
amount of research on software production line, reusable software element, domain
engineering and corresponding software development processes, softwarereuse has
got its maturity. However, software reuse is not the silver bullet. Although it brings
about the benefits such as reduction in cost and time-to-market as well as
promotion in quality, it is, simply speaking, difficult to control and apply.

The reason for this difficulty is complicated, which combines concerns from
various areas, such as economics and management. For example, building the reusable
software element will cost more resource and effort, and the revenues for it always
draw the managers' much attention. To apply reuse to practice, the development
process needs refactoring which leads to the change of organizations. Whatever good
or bad, changes like this often trigger arguments among the development team. I
encountered the situation that I could not persuade my team members to feature
several modules to enable its reuse because they insist that too much overhead
which was absolutely unnecessary would be achieved. There are other issues about
innovations and legality. For instance, a logistics service provider does not want
adopt logistics software components for the third part, since it believe that keeping
the kernel technology is far more important than the benefits brought about by
reuse.

From this point, only a "good idea" is not enough to improve software reuse.
What is needed is the technical solution. Maybe some of them are not so desirable
at their initial stage, but at least it should seem a potential valuable nuisance.
Object-Orientation is a feasible practical technology to allow reusable software
elements wrap and assembly. Following it, a batch of tools, such as IDE and CASE,
are released to improve experience of working with Object-Orientation. Through it,
the early supporters of software reuse gain much, as well as others who kept
watching and waiting gradually agrees with its power. Even if software reuse cannot
be considered as elixir, rather only part of methods to fight against software crisis,
when most software developers begin to depend on it, it becomes so trivial that no
one can ignore it.

Even given the reusable software elements (normally called components), the
story is still too far to reach its end. Something has to be fixed to enable elements'
assembly. It is obvious not to expect a part specified with "meter" can be installed
in a machine made with the measurement "inch". I have to acknowledge that some
elements have large and free range of use, such as the C++ STL library or part of
JDK (Java Development Kit) library. The cost for this range is development
efficiency and quality. With these "components" , you still have to concern on
issues about what the sys tem's overall structure looks like during runtime and how
they communicate with each other. They are essentially the "low level" reusable

5 Design Strategies in Architecture Level 171

elements, laying the foundation for further development only.
However, some reusable elements are different. They can be put directly into an

application container or something the like, and the whole system is finished. The
reuse applied here yields the fixed software architecture. It is software architecture
that guides the implementation of framework and defines the rules by following

which components can run correctly. In this level of reuse, software architecture is
the crucial issue that should be designed reused first. Otherwise, no concrete

environment can be created, neither the components library and thus market. For
example, the EJB components seem nonsense when no EJB application server is put

into use. Software architecture depends on domain. The specific requirements,

concepts and models provide the basic needs to drive the architecture design. For
the GUI application, the framework that supports the architectural style
"Hierarchical Lay er" seems suitable. The "M odel-View-Controller" tri-lay ers makes

the views and models independent with each other, and thus protect extensibility
and allow multiple views based on one model. An example is the JFace viewer, an

Eclipse (www.eclipse.org) component that wraps the MVC pattern. It designates
one SWT widget as view, a ContentProvider and LabelProvider as controllers, and

any object as the model. In other areas, such as the reasoning system or signal filter

and sample system, the architecture is another story.
We need a method to choose a suitable architecture for a specified domain. The

design process concerns the dependent relationships and the structure of framework.
Architectural styles and patterns cannot contribute to this task directly since its

loss of formal foundation. We cannot define the concrete design rules with unclear
describing methods. Alternatively, design space methodology shows its capability

for categorizing architecture designs.

5 .2 Architectural Design Space and Rules

Architectural design starts from a series of requirements specification on attributes
and behaviors, and ends when a set of components, connectors, patterns,
configurations is provided. A test can be made to check whether the requirements
have been met by the instance of the set of architectural elements. If it is, the design

can be considered as eligible.
Maybe you get familiar with a programming language, such as C or C++ . Take

function as an example. A function can be considered as a black box that gets some
input via parameters and gives the result through return value 1 . By adjusting the

input for each parameter, behavior of function may be different, although the
variations are limited and controlled. The adjustability of function is decided by

parameters only. Different configuration to them may generate distinct results in

1 You may argue that some functions have no parameters or some return values through output
parameters, but here we simplify this abstraction.

172 Software Architecture

appearance. The typical example is the WIN32 API "CreateWindow", which has 11
parameters and controls the appearance, function and layout of created window.
Several other examples similar to function are template of C++ or even the
compiler' s command.

Design can also be taken analogy to function, which generates the architectural
alternatives available according to given inputs. One reason why multiple design
results are returned is that not all the parameters are fixed, since some of them are
unpredef'med or leave a range. Another one is some of them are not independent. In
reality, dimensions of a design space interact. Performance impacts extensibility.
Availability impacts security. Synchronous event mechanism may bring the
deadlock. Everything affects cost. And so forth. All in all, the term "design space"
indicates all the possible results, and " dimension" to denote each kind of
requirements, structures or configurations.

Before constructing a space, a codification or classification is needed, expressing
the various values in a single dimension. Range of possible values is called
"categories". For example, we can define the dimension "Principle in handling the
situation of resource shortage", and two values of this dimension can be set as
"Reject excessive requests to guarantee existent session's responses" and "Reduce
the speed of response to allow requests as more as possible". A simple case of
design space is shown in Fig,5.1.

Response
Time

750ms --

500ms -

250ms -
D e s ignA

I
not

extensible

Design B

Design C Design D

I
rebuild to

perform
reconfiguration

I I D,
restart to runtime to Flexibil i ty
perform perform
reconfiguration reconfiguration

Fig. 5 . 1 A design space example

5 . 3 S A D P B A

In this section, we provide our software architecture centered design process, called
SADPBA (Software Analysis and Design Process Based on Architecture) (He,
2004a). This process uses the ideas of design space and has been applied in the ERP
system and the mobile-based collaboration platform. In the following, we give the

5 Design Strategies in Architecture Level 173

introduction to its overview, design space application and track relationships in
them.

5 . 3 . 1 Overview

A process is a series of actions directed toward a specific aim. We define the term
"action" as a tuple:

Action/= < ID, SHi, Resi, Acti, Cons/>

where ID is the identifier of current action; SHi is all the possible stimulation

sequences, each of which abstracts the single input to the system; Resi is all the
responses to SHi by Action/; Acti is all the semantical description of activities,
erecting the rules from SHi to Action/; and Cons/ is the constraints of Action/,
categoried by init, pre- and post-constraints.

A process is an ordered set of actions:

Process = {Action~, Action2, ..., Actionn }

SADPBA is a process formally defined with the terms above, and featured with
its software architecture design action. SADPBA is an iterative process, each period
of which finishes additional design work based on what are done in the previous
one. SADPBA split the process into three actions: requirement analysis, software
architecture design and system design, and thus design space used in this process
follows this pattern, which is the topic of the next section. The overview of
SADPBA is shown in Fig.5.2. Intuitively, through the analysis of SH, Res, Act and
Cons of actions next to each other, designers can judge the correctness of transfer
between design spaces.

5 . 3 . 2 Split Design Process with Design Space

In SADPBA, design space is extended and applied into three different problems
through the whole design process. In other words, process is split by different
design spaces for different concerns. More specifically, dimensions focusing on what
the system can do according to function requirements are accumulated in the
"Function Design Space", the ones on how components are organized may be put
into the "Architecture Design Space", and those cover the detailed design within
components or about algorithms are equipped in "System Design Space". More
generally and formally, design space can be def'med as:

D S = { d l , dz , " " , d~ }

where d~ is the dimension of the design space, holding the possible valid values

called range. In a domain specific design process, we employ three spaces, meaning
that design process go through three spaces and get projected between them
sequentially, as showed in Fig,5.3.

This process performs the refinement from requirements to detail designs.
Function design space concerns requirements, especially the functional ones.

174 Software Architecture

Requirements
Export

LI
unqualified

. . . .

i r~
Description

Functions Preview Generation

Requirement Design

I Requirements
Check

!Evaluation of Functions Specification

unqualified

Architectural Style Design

i Ir

Components Connectors
Design Design

I Architecture Specification Generation

Ecaluation of Architecture Specification

Architecture Design

Components
Internal Design

unqualified

Design Platform Selection

Subsystems Design

Interfaces Data Structures
Design Design

Design Specification Generation

V

Evaluation of Design Specification

System Design

Algorithms
Design

Increment Planning

Fig. 5.2 Overview of SADPBA

5 Design Strategies in Architecture Level 175

":%~! I ..81

3 6 9
Function Design Space Architecture Design Space System Design Space

Fig. 5.3 Design spaces and maps

Architecture design space can be dimensioned with architecture description
mechanism accessed in the Chapter 4, such as. components, connections,
configurations as well as architectural styles and patterns. Besides that, system
design concentrates on more detail, including the internal structures of components
and connectors or critical algorithms. Although you may believe that the maps of
design results between spaces are the job of human-being for their ambiguity and
creative needs, which are normally handled by ideas and experience of designers, we
can possibly find some fixed rules in them, if the process is limited in a single
domain. Formally, we define the dependency as:

Given di and dj DS and di =~d~, if the value of di is a function of d~,
we say that d~ depends on d~, and expresses in the form of di dep dj .

And define the map relationships as:

DS1 and DSz are two design spaces (they may be the same one), if a
rule exists, expressed as f , which makes any element a ~ DS1 has a
counterpart/3 in DS2, we say that f is a map from DS1 to DSz. This

relationship is expressed as f ==DS1--~DSz and f(c~) ==/3.

For example, in the GUI system, if users want Undo/Redo support, this
requirement is always met by a "command pattern" in architecture space (thus, we
need components of command, command stack and command manager) and then gets
further specification by taking what necessary command should do and whether
extra features are required, all of which are the topics of system space. In the Fig.5.
3, the arrowed edges (D, and (~) reflect these maps. Map (2) seems special since it is
done in a single space, which means a pattern should be applied in the design of
current space. For example, when adopting "command pat tern" in a modeling
system, a good decision following that is to link the commands and the objects
involved in edit operations by reusable policies. After it is done, you can change the
edit functions of a certain kind of object simply by adding or removing policies, or
allow the edit of new object by assigning existent policies to them conveniently.

In this manner, it is possible to implement a "design machine" that is fed with
requirements and give design results. This machine can also choose the best one, if
we predef'me an evaluation formula and assign weight to different dimensions. To

176 Software Architecture

achieve this point, we need gather the rules for mapping, normally in the way of
comparing and summarizing the designs under design space specifications. Therefore,
we own the capability of automatically judging whether a design is reasonable and
potential pitfalls incurred by the hidden shortcomings.

5 . 3 . 3 Trace Mechanism in SADPBA

For a tool capable of automatic design, it is important to judge whether its output is
good or not. A validation achieves this, which calls for the information about
mapping between every design spaces. This is why we need to extract the "trace"
relationship in SADPBA.

Trace means a bidirectional relationship between two elements in one or multiple
design spaces, which defined by a certain rules. More formally,

In design spaces, if element a can be tracked to the element t3, we say
that element a and/3 have traceable relationship, expressed as a Trace to
/3. (Since this relationship is bidirectional, given a Trace to/3,/3 Trace to a
holds definitely.)

In SADPBA, we categorize three kinds of traceable relationships.
They come from the completeness of design spaces used in SADPBA.
The first one stands between DSF and DSA:

Given DSv is a Function Design Space and DSA is an Architecture
Design Space, and f is a rule of map between them. Only when any
element a E DS~: and all its dependencies can be mapped to the element
in DSA , DSv is complete to DSA.

Another one exists between DSA and DSs:

Given DSA is an Architecture Design Space and DSs is an System
Design Space, and f is a rule of map between them. Only when any
element a E DSA and all its dependencies can be mapped to the element
in DSs, DSA is complete to DSs.

Purely from mathematics, completeness means every element in a domain of a
map can find a counterpart in its range. In design space, completeness guarantees
that given an input in one design space we can find a result in the next design space
for sure. The whole design process of SADPBA thus behaves determinably, which
is the foundation of automatic design capable tool.

SADPBA employs the sequence-based specification process. Each sequence
indicates a use scenario. Through enumeration, permutation and combination of
scenarios, SADPBA developers check and validate the design results and create
deterministic traceable relationship s.

�9 In the same space, elements that have dependency relationship have traceable
relationship.

�9 When DSv is complete to DFA, the elements in DSF and in DSA have
traceable relationship.

�9 When DSA is complete to DSs, the elements in DSA and in DSs have

5 Design Strategies in Architecture Level 177

traceable relationship.

5 . 3 . 4 Life Cycle Model of Software Architecture

Software architecture is critical to the success of large-scale of software system.
Choosing unsuitable architecture will lead to a consequence of disaster which we
take effort to avoid. Therefore, we create the concept of software architecture life
cycle, based on which we establish formal reasoning system and principles. In a life
cycle, software architecture comes through a process of creation, evolution and
deconstruction.

The life cycle model of software architecture is the description of all
phases software architecture will come through in all its life. This
description is independent to the architecture specific to a certain project,
guiding design of software architecture to follow the formal theory
foundations and engineering p rincip les.

A life cycle model of software architecture is composed of a few phases listed as
below:

][Design ofSA [I_] Describing and
I "-! Analyzing SA

(formal)

] EvolutionofSA[

] EvaluatingSA]

[ApplyingSA]

Fig. 5.4 Life cycle model of software architecture

�9 In fo rmal ly describing software architecture
When the initial idea of architecture is generated, it is often not fully fledged.

Designers share their mind about architecture with others in human language. For
example, client/server architecture may be a good point to start the architecture
design. Although native, this step is inevitable.

�9 Formally describing and analyzing software architecture
In this phase, architecture is refined with suitable formal theory, such as process

178 Software Architecture

algebra or Petri net. Precise definitions should be given to avoid the ambiguous
semantics of architecture used in the specific project. In this way, with help of
analysis tool, designers are able to validate the architecture to figure out the
problems such as whether potential deadlocks exist, whether the system may enter a
phase of chaos and so on. Through formally describing and analyzing, blindly
choosing architecture will be avoided in most cases.

�9 Evaluating software architecture

Although formal analysis is powerful, it cannot deal with all the problems of
architecture. In practice, evaluation is a critical step which involves stakeholders of
the project and attempts to identify unsatisfied aspects of architecture. Extra model
may be employed to check whether required quality attributes conform to the pre-
specified conditions. It is this phase to determine whether current architecture can
be applied.

�9 Applying software architecture

In this phase, the refined software architecture will be applied in the design of
system, based on which an initial framework organizing architecture elements.

�9 Evolution of software architecture

Changes of requirements, techniques, e n v i r o ~ t , and deployment may lead to the
change of architecture, which is called "evolution of software architecture". Architecttire
will be designed and validated thus to ensure its suitability in the new situation.

�9 Terminal of software architecture

If software architecture becx)rr~ so difficult to understand after a series of evolution or
nxxtification, thus cannot fulfill its blueprint responsibility, it should be dropped. The life
of this software architecture is terminated and new one will errerge.

5 . 3 . 5 SADPBA in Practice

Based on the design space theory, SADPBA creates the architecture development
tool to support query and move of dependency and traceable relationships in the
design, assisting developers to check the validation of correctness, completeness and
consistency of specifications about requirements, architecture and system details.
Fig.5.5 illustrates the outline of this tool.

GUI

Requirements
Analysis and
Management

Tool

Architecture
Design Tool

System Design
Tool

Knowledge Repository

Host Evironment

Fig. 5.5 Overview of SADPBA development tool

5 Design Strategies in Architecture Level 179

The functions provided by each part in the figure are listed as follows:
Knowledge Reposi tory: Archiving and mana#ng software requirements

specifications, architecture documents, and dependency and traceable relationships.
Requirements Analysis and Management Tool: Help designers analyze and

manage requirements, as well as generate requirements specification.
Architecture Design Tool: Help designers to design and describe software

architecture, and create and maintain the traceable relationship between architecture
description and requirements specification.

System Design Tool: Help designers convert architecture to the elements in
implementation level, such as package, class and interface by Object-Oriented
methodologies. Create and maintain the traceable relationship between design
documents and architecture specification.

GUI: Integrate all the tools and offer the style consistent operating interface.
The kernel of this tool is its reposi tory 's structure. Even getting the general idea

about design space, we also need solutions on the implementation repository,
specifically for the three design spaces used in this tool. To handle them, we create
three feature matrices. In the action of requirements analysis, we define the
requirement feature matrix, each line of which contains the attributes for a single
record of requirement, including priority, status, cost, degree of difficulty, steadiness
and trace (illustrated in Table 5.1). In the action of architecture design, we define the
architecture feature matrix, with the attributes category, semantics, heterogeneity,
extensibility, constraints, non-function attributes and trace (illustrated in Table 5.2).
In the action of system design, we use the system design feature matrix, with the
lines that represent the design solution, expressed by the attributes category, name,
function, concurrency, degree of difficulty, cost and trace (illustrated in Table 5.3).

~ e s

requirements

Table 5.1 Requirement Analysis Feature Matrix

Priority Status Cost Difficulty Steadiness Trace to
Trace
from

Reql 2 Approved 2 Low High . A_comp 1

Req2 1 App roved 4 M e d i u m Medium . A_comp 3
. , . . , , o . , . , . ~ * * *

Req 74 3 Validate 4 High Low A_con4

Table 5.2 Architecture Design Feature Matrix

e s

architecture
Comp 1 Prim Windows

Connl Dcom Internet

Cornp2 Comp Windows
, , . , ~ , , ,

Config8 C/S Three-ti~s

Cat. Semantics Extensibility Heterogeneity
T r a c e

Constraints Trace to
from

Low Low

High Low

Low Medium
o , . . .

High High

S_Comp 1

S lnt2 R Comp5

S Comp 1 R_Comp2
~ ~ 1 7 6

S_Int21 R_Comp55

180 Software Architecture

ures

elements of ~ , .
architecture

Table 5.3 System Design Feature Matrix

Cat. Constraints

Comp 1 Comp Windows

Algl

Interfl

FFT Windows

Prim Intemet

Prim Windows Comp30

Concurrency

Low

High

Medium

Difficulty

Low

Low

High

High Medium

Trace
Function Trace to

from

A_Comp 1

A_Comp 1

A_Config2

A Comp26

5 . 4 Study Case. M E E C S

In this section, we present the Mobile Embedded E-Commerce System (MEECS),
by which we perform the explorative research on applying agent into mobile e-
commerce. In the development of this system, we introduce and refine SADPBA
discussed above. In the following content, we first give an introduction to this
system and then explain how SADPBA was used.

5 . 4 . 1 Introduction to MEECS

E-commerce has been popular for about two decades. Carefully look around, and
you can find that e-commerce exists everywhere. Today, you can buy almost
whatever you want on the web site such as Amazon or e-Bay. This is the
e-commerce in a narrow sense that is normally called "B2C" pattern. Besides that,
there are also B2B, B2G, G2G and so on. In general, e-commerce is a combination of
computer technologies, such as presentation, networking and data management, and
commerce pattern, a fine-tuned set of activities, processes, principles and methods
aiming to gain commercial benefits.

The mobile devices appear completely different compared to the ones seven or
eight years ago. Their capabilities of computing and storage have exceeded that of a
PC in 2000. Meanwhile, mobile devices have their own outstanding characters, such
as you can bring and use them everywhere if you like or it accept multiple input
modes including buttons, voice, and even context sensing. What follows these
characters is the creative application and further the new commercial pattern.
However, software system in the mobile environment is different, leading to the
special concerns on their construction.

�9 Heterogeneity
A software system running on the mobile environment needs to handle the

heterogeneity of devices and networking, For example, a message transferred from a
mobile terminal may come through the GPRS network and then enter the backbone
net comprised of fibers, which use complete different protocols and transfer

5 Design Strategies in Architecture Level 181

techniques. Either, you cannot guarantee the devices involved in a system own the
same architecture of hardware and software.

�9 Unstability
Different from the assumption from conventional software system that in most

time the host environment keeps a healthy status, in the mobile environment, the
unstable state is "normal". The networking may be cut off frequently, the power
support may be off, and the devices participating in a system may be turned off at
any time. When people are using mobile networked devices while moving around,
the communication bandwidth changes dynamically. All of these forces that the
software in the mobile environment cannot run in the long term online style but do
everything when it is actually needed and gets ready for all kinds of potential errors.

�9 Asymmetry
The fixed nodes and mobile devices coexist in the system but have discrepant

performance. This is the ultimate reason why mobile devices cannot play the role of
server. In the design of system, much attention has to be paid to carefully avoid the
excessive work load on the mobile devices.

�9 Limit Resource
Mobile devices, compared to the current desktop workstations or servers,

behave weakly in computation speed, capacity of memory, power support and
capability of display. This means why they cannot succeed with the all-in-one
solution when facing the heterogeneity like the current fixed application servers.

Under these factors, current approaches for supporting distributed system lost
their effects in the mobile environment, which is solved by MEECS. MEECS
introduces the "agent" technology to avoid people 's fulsome intervention into the
problems mentioned above. An overview of MEECS is shown in Fig,5.6, separated
into three parts.

Fig. 5.6 Overview of MEECS

The core of MEECS is the Agent Router, containing a collection of independent
agents capable of fending the services they are responsible of, which are called

182 Software Architecture

"service agents". This kind of agents do not execute directly on the mobile devices,
but stay on the platform that implements the agent router. The mobile users who
want to use this router should download a "UI agent" (we implement it as a GUI
MIDlet) and tell it what they need (such as a dynamicstock diagram). And then this

UI agent forwards the request to the agents on the Agent Router, who actually
knows the location of service providers. The seleeted service agent connects with
the service and finally return the disp lay able result to the user. �9

Of course, all of above, the core technique, the overview and its work

mechanism, are only our general idea about how to achieve this task. The detailed
process, where we use SADPBA, will be depicted in the next section.

5 . 4 . 2 Applying SADPBA in MEECS

In this section, we briefly introduce the design process based on SADPBA, and
describe how the decisions about architecture of MEECS are made by
comprehensive consideration of requirements and other concerns such as techniques
and research related. We start from the enumeration of primary requirements of our

project.
Just like what most people are doing nowadays, we use the artifact "use cases"

document to record our project ' s goals. First, we categorize three kinds of actors in
this system, the client users who use the handheld mobile devices, the

administrators of Agent Router, and the vendors who provide services.

5 . 4 . 2 . 1 Requirements Analysis

The goal of client users is very simple: they should see the result generated by the
service through user interface and can send requests to find and choose some
services. The heterogeneity of display in various devices should be taken into
account, which triggers our another research project, the Language Facilitating
Interface Representation under Limited Mobile Computing Environment (FIML)
(Wang, 2003). Simply speaking, this is a markup language specifically for graphical
display in different mobile devices. It is rather trivial to talk more about this
language in this section. What you should know is that this language needs parsing
and behaviors represented by it should be executed. Therefore, the use case diagram

seems like what is shown in Fig.5.7.

),
rk..

Fig. 5.7 Use case diagram of Client User

The tasks of administrators are to maintain the Agent Router ' s map records,

5 Design Strategies in Architecture Level 183

each of which bind a client user to a service. For this, we introduce the idea of
administrator agent, an independent component capable of performing
administrators' duties, such as registering or unregistering a client user, fmding the
suitable service brokers and finally clearing the channel enabling communication
between client user and service directly. Other than the functional requirements, the
performance and availability concerns need to find their sOlution here. In the
architecture design of this part, you can see that how these requirements are met.

The vendors have fewer responsibilities. For this system, they only need to
implement their services by following a specification which guarantees that their
services can be recognized and used by the agents. Since it is relative easy and not
the key point of MEECS, we postpone its design until the late phase of system.

Generalizing the points above, we generate three associated packages of use
cases (illustrated in Fig.5.8) as the start point to the architecture design phase.

I
Client

Application Services

I
1

Router ~ Agent

Packages of use cases

I I I

i I
,, , ,,

i

Client User Administrator Vendor

Fig. 5.8

5 . 4 . 2 . 2 Architecture Design

In the architecture design phase, we separate the whole system into three sub-ones.
The client, which is called as "terminal component" in the architecture design,
focuses on the representation functions. And the Agent Router is designed as
Mobile Embedded E-Commerce Platform (MEECP).

�9 T e r m i n a l

The architecture of terminal is shown in Fig~5.9.
Terminal contains the components listed as following:

�9 F a c a d e : Responsible of construct and display of user interface. More
specifically, the controls, text field, text area, check box, group, button and
image are generated and rendered by this component.

�9 Command: Parsing the behavior mark in the FIML interface, generating
the command objects and then performing their execution.

�9 Parser : Parsing the mark of FIML and extracting the data embedded in
them, preparing for further operations such as command execution or
interface display.

184 Software Architecture

Fig. 5.9 Architecture of MEECS terminal

�9 R M S : Archiving the data permanently in the mobile terminal, enabling the
operations of records query, insert, delete and-update. RMS (Record
Management Storage) originally is the facility provided by J2ME for
permanent record storage. We extend it to make convenient the operations
of records designed in our own system.

�9 MsgCenter: The daemon component taking charge to the message
communications related issues, including the bidirectional transform
between message objects created by users and byte streams fitting for the
transmissions on the network, as well as sending and receiving of
messages. Under the mobile environment, network breaking off is the
conventional problem. In this concern, MsgCenter is designed to work in
the mail box style, or more canonical, the asynchronous transmission,
allowing connection interrupt and resume. MsgCenter is the sole port that
links the terminal distributed discretely in the net.

The architecture for client supports three main processes: the generation of
flexible user interface, the execution of behavior and the messages handling.

The user interface is generated in the following steps. The FIML Parser
component parses the control description in the markup language, and then extends
the variables, replacing the configuration table, the system parameters and page
parameters. The Facade component gets the parse result, a description of controls,
and f'mally renders the display area.

Execution of behaviors starts from the interaction from users. Once people trig~r some
behavior, its description is fed into the C o ~ d component, which first replaces the
paran~ers in the description and extracts the e l ~ t s of that behavior. The corntmnd
queue accepts the command and keeps it, until the c o ~ d execution thread gets started
and fetchs this command for ex~aation.

5 Design Strategies in Architecture Level 185

In the process of behavior execution, if message should be sent to the MEECP,
the MsgCenter component is activated. It maintains two queues, one for the
received messages and another for the messages to be sent. To tackle this task,
MEECP employs two threads respectively.

�9 MEECP
The MEECP component is responsible of service register, terminal register,

handle of users' message and gives feedback. It has three ports: Reg, Send and Rcv.
Reg is the port enabling terminal' s register and unregister. Each terminal which
expects gain some services in MEECS should record its identifier and properties
first, the latter of which is the basis to automatically reason about which services
should be bound to them if more than one can be found and seem satisfactory. Send
and Rcv are the ports for message communications. The register of services is
finished by message manipulation. MEECP has five top level components, Bus,
Super Server Agent, Administrator Agent, Broker Agent and Function Agent, where
Bus is composed of MsgCenter (similar to the one in Terminal), Agent Management
System (AMS) and Directory Facility (DF). The architecture of MEECP is shown
in Fig.5.10.

Fig. 5.10 Architecture of MEECP

To solve the problem of task allocation and the efficiency of communications
among agents, MEECP introduces the Agent Layered Management Architecture. The
agents are separated into five layers according to their duties, as in Fig,5.11.

The Layer of Common Utility, supported by Agent Management System and
Directory Function, facilitating the basic agent information keeping, including the
identifier, status, time stamp and bound services. The messages coming from outside
will be handled by this layer. Therefore, administrators of MEECP can impose
policies by filtering out the messages needing to ignoance.

The Layer of Management control all the agents deployed on the platform. And

186 Software Architecture

Fig. 5.11 Agent layered management architecture

noticeably, it is itself also an agent, called Super Server Agent. In the perspective of
functions, Super Server Agent does nothing about what the terminal wants, but is
the start point of task allocation.

The Layer of Inception finishes .the job of connecting one terminal to a carefully
selected Function Agent, the proxy of actual services. In this layer, two kinds of
agents, Administrator Agent and Server Agent cooperate to balance the load of

numerous agents.
The Layer of Service Category is set for category of services. It is this layer that

keeps the information of a set of related services registered and prepares to choose
one for the terminal according to the guide tips attached by it in the form of

prop ert ies.
The Layer of Domain Specific Services provides the final service proxy. After all

steps of registering, the terminal and its bound services are linked by this kind of
agents. Of course, one can realize the function in this agent so that there is no burden
of service objects. However, doing this too much will extremely increase the load of
MEECP and affects the response ~aeration to normal requests from other terminals.

The reason of creating such a pyramid like agents layers is to reduce the
opportunities that some agents can afford the load while others stay leisure. In this
architecture, terminal register in fact is a process of fetching different agent. On the
one hand, the terminal can be implemented in a simple way in that it needs to know
the other side of communication must be an agent (no matter which kind of agent,
they have the unified communication protocols and identical access interface). On
the other hand, MEECP guides the terminal to where they should go, that is, Super
Server Agent chooses one Server Agent, Server Agent choose one Administrator
Agent, Administrator Agent chooses one Broker Agent, and at last Broker Agent

chooses one Function Agent.
But why set five layers? Is all kinds of agents in the layer expect those of

function only do the same job, that is, choose one agent in the next layer? This is
not the case. Each kind of agents has duties of its own. Super Server Agent is
created to allow the cluster of MEECP servers to compose a logic integrated whole,
in which case several MEECP component instances can coexist and collaborate,
wherever their physical location are. Similar for each MEECP server, agents are
separated into multiple groups equipping with distinct administrative policies. And
Broker Agent, as mentioned above, manages a collection of services that can fall in

5 Design Strategies in Architecture Level 187

the same category, facilitating the implementatiofi of match engines that attempt to
follow terminals' requirements for service because different categories of services
have different concepts and rules.

Administrative
< ~ ~ ~ ~ Croup

~ ~ ~ ~ ~ - - ' - M;~Pe~I ver

ECP Server

Fig. 5.12 Reference model of MEECP

The Agent Management System (AM S) is a framework in which various agents
can be created, disposed, located, transferred and communicated to. With the help of
AMS, agents are able to enter an agent group, search services provided in it or even
connect with agents in other group or server. W h a t ' s more, AM S controls the
activation of agents. AMS will allocate a thread from a thread pool to execute code
embedded in the agent and collect the taken resource if an agen t ' s reference count

reduces to zero.
The Directory Function (DF) is a table maintaining the information about

terminals, agents and services. Aside from the respective information of these three
entities, DF records their bind relationship. For example, when a terminal finishes
its register, the corresponding Super Server Agent, Server Agent, Administrator
Agent, Broker Agent and Function Agent will be attached in the record. DF uses the
transactions based on the database, to guarantee the atomicity and consistency.

MEECPInstance 1

Agent I

sgCenter ,]

/ Message Transfer
~ 1 Protocol

Agent

MEECP Instance 2
Fig. 5.13 Model of message communications of agents crossing MEECP instances

188 Software Architecture

5 . 4 . 2 . 3 System Design

It is time to convert architecture to implementation-related models, where we use
UML to sketch the system that will be coded in Java. Fig. 5.14 is the package
diagram of MEECS. And Fig.5.15 is the class enumeration diagram (relationships
among classes are ignored here). Explaining every class is trivial and thus we do not
want to rove in the detail of implementation with more broad statements. But we
want to clarify the path from requirements to implementation.

i
Terminal

I
Adminstrator Agent

, ,4"~" i

AMS Center Function Agent
. ~,~ .~ ~

DF Broker Agent

~ lnforr!ation D 1

Fig. 5.14 Package diagram of M EECS

In a domain, the consideration should be emphasized on extracting and describing
the domain specific concepts during the requirements analysis. Those concepts
related to the solution of problem require much more attention. The result of this
phase is so called domain model, which although cannot solve the problem but
provide an order-of-magnitude sense to aid developers to gain a deeper insight. In
the case of MEECS, the concepts such as mobile client, agent, register information
keeper, are identified to define the requirements. The requirement analysis is in fact
an action that finding the constraints and conditions the entities in the domain model
have to conform to. Note that the object model is neither a description of
architecture nor class or objects in the Object-Oriented development, but only a
simplification and visualization of concepts in the problem world.

The architecture design is the first step getting approach to the solution in the
high level of the system. Although algorithms are so important to succeed, they
only deal with the problems about computation, which is only a small part in the
usable software. More broadly, requirements of quality attribute, performance,
usability, availability, security and so on, have to be tackled by the cooperation of
decomposed elements. In the architecture design, concepts are separated according to
the requirements into elements and regulate their interaction. In MEECP, for
example, in order to balance the load, we design the layered agents. Abstractly, this
is a map from function design space to the architecture design one, which if gotten

5 Design Strategies in Architecture Level 189

DebugOff

�9 setDebugger()
�9 getDebugger()
�9 clearAllDebuggedAgents()
�9 addDebuggedAgents()
�9 removeDebuggedAgents()
�9 getAllDebuggedAents()
�9 getCloneOfDebuggedAgents()

setPassword()
getPassword()

InstallMTP

setAddress()
getAddress()
setContainer()
getContainer()
setClassN ame()

~. getClassName()

CreateAgent

~, setAgentName()
~. getAgentName()

setClassName()
getClassName()
setContainer()
getContainer()
setPassword()
getPassword()
setDelegation()

~, getDelegation()
addArguments(0

,~ getAllArguments()

KillAgent

~.setAgent()
~.getAgent()
~setPassword()
~getPassword()

KillContainer

setContainer()
getContainer()
setPassword()
getPassword()

S n i ffO n

setSniffer()
getSniffer()

~, clearAllSniffedAgents()
addSniffedAgents()
rem oveSni ffedAg ents()
getAll SniffedAgents()
getCloneOfSniffedAgent s()
setPassword()
getPassword()

AgentManagementOntology

instance ()
JADEAgentManagementOntology()
initInstance()

ManagementOntology

getlnstance()
ManagementOntology()

' 'ShowG ui

SniffOff

~. setSniffOffer()
getSniffOffer()
clearAllSniffedAgents()
addSniffedAgents()

~, removeSniffedAgents()
getAll Sni ffedAgents()
getCloneOfSni ffedAgent s()
setPassword()
~etPassword()

UninstallMTP

setAddress()
~, getAddress()

setContainer()
getContainer()

DebugOn

setDebugger()
getDebugger()
clearAllDebuggedAgents()
addDebuggedAgents()
removeDebuggedAgents()
getAllDebuggedAgents()
getCloneOfDebuggedAgents()
setPassword()
getPassword()

Fig. 5.15 Class diagram of administrator agent (relationships ignored)

verified again and again we can put in the rules of map created for this domain, and
then contributes to the automatic design. Architecture design is programming
language neutral in which only the overall sight of final system is generated.
However it is a good guide to explore further which techniques should be used or
which elements should be built or bought. In SADPBA several iterations occur
during architecture design to refine the architecture incrementally.

Finally in the system design, we determine the techniques and convert the
architecture into the model that is easily to be coded. Special tricks and features in
the programming language are concerned. For instance, we use RMS provided by
J2ME to achieve the permanent information storage. We convert ports in the
architecture to the methods enclosed by Java interface. And we implement various
agents into a tree of generalized hierarchical agent classes.

5 . 5 Summary

In this chapter, we introduce the design strategies in the architecture level. Actions

190 Software Architecture

of design are abstracted as design space. We extend the design space by splitting it
into function design space, architecture design space and system design space, which
is the core idea of SADPBA, an architecture-centered design process. We present
the concepts and terms in SADPBA, and discuss the architecture life cycle model.

We develop MEECS, a system of mobile e-commerce, in the design phase of
which we use SADPBA. In this case, three design phases are listed in more detail to
illustrate how an element of one design space is mapped.

References

(He, 2003) He, J., et al. A Component Based Distributed Software Architectural
Description Environment. Mini-micro Systems 2003(24): 1637-1640.

(He, 2004a) He, J., et al. Model of Software Analysis and Design Process Based on
Architecture. Journal of Xi'an Jiaotong University 2004a(38): 591-594.

(He, 2004b) He, J., et al. E-Comrmrce Oriented Knowledge Description Lan~tage. Journal
of Chinese/nfonmtion Proc~sing 2004b(18): 37-42.

(He, 2005a) He, J. & Qin, Z. Modeling and Checking the Behavior of Software
Architecture. Journal of Computer Research and Development 2005(42): 2018
-2024.

(Jia, 2005) Jia, X., et al. A Distributed Software Architecture Design Framework
Based on Attributed Grammar. Journal of Zhejiang University Science 2005
(6A): 513-518.

(Wang, 2003) Wang, Z. & He, J. An Effective Language Fiml Facilitating Interface
Representation under Limited Mobile Environment. Proceedings fo the 7th
International Conference for Young Comp uer Scientists.2003.

Software Architecture IDE

6 .1 What Can Software Architecture IDE do

6 . 1 . 1 A Comparison with Formalized Description Approach

In the previous chapter, formalized description approach is discussed to describe
software architecture. However, researchers incline to draw much more support
from software architecture integrated development environment (IDE), a
development aid tool, for its powerful functions. Recently, more and more
researchers begin to study tools' support in architecture that aids practitioners to
create domain-specific architectural design. The shift from formalized description
approach to software architecture IDE description is a necessary tendency during
the growth of software architecture.

Compared with formalized description approach, IDE is skilled in many aspects.
Firstly, the situation that architects have to remember a large number of notations,
grammars, formulas and variables in formalized descriptions has gone for ever. With
IDE, they would free themselves from these rough tasks and concentrate great
attentions to architecture design. Secondly, as to a highly complex system, it is
necessary to automatically manage resources with a reasonable mechanism. Formal
apporach cannot support this function directly. Generally, almost IDE provides file
system to manage resources. In this case, researchers can develop and maintain
system with serviceable documents, which would be a great increment of efficiency
and a reduction of cost and work. Thirdly, IDE integrates a group of tools ' to
accomplish tasks automatically instead of working by hand. The formalized
description can not rival IDE in this point. For example, IDE holds friendly user
graphical interface and allows visible operations. In the meanwhile, diverse views
and editors are used to inspect and modify system; almost all of the current IDEs
support analysis tool whose function, at a minimum, covers from syntax check to
semantics validation. It can help you keep a closely check on the system and detect

192 Software Architecture

errors at program running time; furthermore, some IDEs allow developers to define
their own tests by themselves or add other tools to extend check function; IDE also
can map a software design to codes with relative tools, like parser, compiler, code
generator and so on. Obviously, the introduction of IDE will improve working
efficiency many times and reduce time and cost as much as possible.

The above advantages are considered from the perspective of developers. What
is more, IDE provides a much more transplant and comprehensive design to end
users. The visual result is not only an ideal channel to communicate among
stakeholders but a perfect platform to explore from multi-viewpoints. All in all, the
emergence of IDE caters to the software architecture development.

6 . 1 . 2 Important Roles of Architecture IDE

Every surveyed ADL provides some tool support, with emphasizing on its
concerned fields and directing attention to a particular technique. The limited
supports of ADLs directly reflect the tool 's functions. In this section, we want to
give a view of what software architecture integrated development environment can
do.

An integrated development environment is an all-in-one tool for writing, editing,
compiling, and running computer program. Software architecture IDE focuses on
software development from the perspective of system architecture on the basis of
software architectural formalized description. It directs at accelerating development
speed, increasing productive efficiency and assuring software quality.

The computer-aided software architecture development tool is well established
for its flexible operations and mighty functions. It not only provides tools like
graphical user interface, textual and graphical editor, but also equips system model
analysis, implementation, and evaluation. Besides, IDE also supports system
description, definition, design and extension. It allows developers to analyze and
design the architecture at component level, which means that software architecture
can significantly increase the opportunity for reusing at component level availably.
In conclusion, IDE is a powerful tool whose crucial roles are elaborated as follows.

6 . 1 . 2 . 1 Aid Architectural Modeling

One of the most important functions of IDE is helping architects to model. IDE
changes the current situation that singular software architecture description method
exists. Developers not only get out of boring and obscure semantic rules but also,
inconceivably, just click mouse and hit keyboard to accomplish the tasks which cost
plenty of time and efforts before. As we mentioned in the front section, during the
formalized description approach period, model is the process of decomposing
system into components, connectors or any other elements, and describing their
relationships and configures. On the contrary, IDE furnishes a series of tools to
support model from stem to stem. Specially speaking, it provides designing tool,
modeling tool, analyzing tool, validating tool, implementing tool and so on. Different
IDE integrates various tools and stresses one or more of them according to practical
situations, such as end users' demands, application domain, architectural description

6 Software Architecture IDE 193

language, architectural style and so forth. In addition, IDE provides diverse kinds of
views for stakeholders to explore models from flexible concerns. Developers can

benefit much from those available tools during work.

6 . 1 . 2 . 2 Support Hierarchical Description

As it known to all, elements with simple architectural type can not express
complicated system adequately. Fortunately, a complex or hierarchical architectural
type designed for component and connector appears to address this problem. The
hierarchy mechanism has been elaborated in previous chapters; in this section, we
prefer to enumerate how IDE realizes this mechanism. We cite a simple example, its

framework showed as the underside view, to provide a glimpse of hierarchical

architecture.

C ient Server

\ i I N i \
I \

I \
I \

I \
I \

I \
I aa \

I

Fig. 6.1 A hierarchal component

This figure illustrates the use of hierarchy on a server-client system. At the top
level, the whole sys tem consists of two components, server and client. Server
considered as an independent sub-architecture consists of three elements. In order to
represent this relationship in IDE, sub-type and sub-architecture support is
provided to realize hierarchy efficiently. In a concrete software development
environment, you can define a complex type as a new architecture type. This new
type attaches to a sub-architecture which is an independent-function entity. If you
want to build a component with such type in IDE, you will do nothing more than
evaluating component type with this complex type. Similar to components,
connectors can also be served as high level abstract elements for a nested

architectural subsystem.

6 . 1 . 2 . 3 Support Validation Test Mechanism

Almost all of current IDEs provide validation test mechanism. Architectural
description language parsers and compilers are necessary components of IDE.
Parsers analyze syntactic correctness, while compilers establish semantic
correctness. Furthermore, many IDEs do not limit these basic testing mechanisms.
Certain features of IDE can be characterized as intrusive: WRIGHT uses a model

194 Software Architecture

checker to analyze individual components and connectors attached to each other for
inconsistency and deadlocks; C2 ensures style specific topological constraints and
type conformance among architectural elements; SADL uses refinement maps to
establish relative correctness of two architectures. In ArchStudio, Archlight not only
checks sys t em ' s consistency and completeness whose results would be showed in
an issue panel but also supports part test by choosing your concerned elements. For
instance, if you forget to connect an interface to an entity, it will report bug with
warning message: Link endpoint should point to an interface.

Nowadays, IDE supports two various validating methods: proactive and reactive
(Medvidovic, 2000). The former limits the available design decisions based on the
current state of architectural design. For instance, IDE may provide tool that
prevents selection of components whose interfaces do not match those current
architecture or disallow invocation of analysis tools on incomplete architectures.
The latter refers to the tools detecting existing errors. They may either inform the
errors of architecture and allow to correct them later or force to remedy current
problems before moving on. To take an example, in the MetaH~s graphical editor,
with Apply button depressed, any errors must be rectified before the architect may
continue with the design.

6 . 1 . 2 . 4 Provide Graphical and Textual User Environment

IDE is a visual tool for researchers to develop systems. Like other common
development tools, it is a basic ability to supply a user-friendly graphical and
convenient environment. We elaborate this point from four aspects.

Firstly, IDE supplies graphical user interface which includes many interface
items such as toolbar, navigator view, outline view, workbench and so forth. Toolbar
lists many common buttons; views usually display information as list or tree form.
Secondly, aiming to release developers from a large number of boring grammars, IDE
provides graphical editors which contain a series of graphical elements and
correspond to an architectural object each. With visual operations like choosing
graphical notations, editing their properties, building connections among them, you
can depict the system. Take Darwin system for example, there is a toolbar
containing several graphs which represent different kinds of architecture elements: a
hollow rectangle denotes a component, a straight line means a link, a circle signifies
an interface. Those graphs can be dragged in workbench to establish an architectural
view. Designers can directly modify elements ~ features in attribute tables rather
than editing source codes. There is no doubt that it improves efficiency greatly.
Thirdly, in order to help developers record architectural configuration document
which is an efficient assistant to understand system, IDE introduces a textual editor.
Usually, IDE automatically generates these documents according to the graphical
descriptions. When the model is changed, its textual depictions respond at once.
This synchronous mechanism ensures system~ s consistency. On the other hand,
editor can detect conflicts and confirm the grammar correctness. At last, IDE helps
to store running states and testing information which are valuable data for analyzing
or advancing system. Sometimes, a pane will be left to display errors or warnings. In

6 Software Architecture IDE 195

a word, the integrated visual architectural design tool facilitates developers to
capture, edit and update architectural information.

6 . 1 . 2 . 5 Support Multi-views

Software architecture involves so much complex information that it must be
described by multi-views. Developers model diverse serviceable views to satisfy
actual needs and long-term targets. IDE provides automated support for alternating
between graphical view and textual view which are two common views. Aside from
them, there are some particular ones for special demands. For example, Darwin
system employs hierarchical system view which shows all the component types and
their relationships in a tree structure, while ArchStudio supplies file management
view to manage documents facility. C2 visualizes the execution behavior of a
architecture by building an executable simulator and providing tools for viewing and
filtering events generated by the simulator. Additionally, graphical view is an
abstract conception which covers logical view, process view, physical view,
development view and so on. These various views express the same architecture
from different aspects. They are sub-system architectures from a particular
perspective direct to emphasize the noteworthy information, and ignore the rest.
Although there is only an active view at a time, fortunately you can choose others
by alternating tags.

6.2 Prototype

Nowadays, more and more software architecture IDEs have emerged to cater to the
flexible software architectures. Though these IDEs are applied to special ADLs with
their own particulars, they share similar bases and frameworks. We draw out the
essences from current software architectural IDEs and abstract a prototype. The
prototype is just a general frame which cannot perform any actual functions. The
prototype is provided to assist developers to understand principles and structures
thoroughly and even build a brand-new one if necessary. In order to avoid a hollow
illustration, we plan to introduce eXtensible Architecture Research System (XArch
system) which is an experimental platform for system architecture studies. The
XArch system realizes its particular function of extensibility with Foundation of
Extensible Architecture Language (FEAL)-based ADLs. With this concrete instance,
you can get a distinct acquaintance of this section.

From the viewpoint of software architecture IDEs ' work mechanisms, the
prototype is divided into three layers: user interface layer, model layer, and
foundational layer. On the top is the user interface layer; the middle layer is so
complex and significant that it has to include many modules; the bottom layer
covers all support conditions. The Mapper document is related to both user
interface layer and model layer. Its skeleton is diagramed as Fig.6.2.

196 Software Architecture

Fig. 6.2 Framework of IDE prototype

6 . 2 . 1 User Interface Layer

User interface layer is the external level of the system which is the only one

communicating channel between users and system. What users can touch directly is
various visual panes in this layer. These panes fall into two major categories: editors
and views. Both of them are visual components, but they hold their own
distinguishing qualities. Editors allow users to open, edit, and save objects of the
resources. They are document-centric, following an open--save--c lose lifecycle
similar to file system-based tools such as Microsoft Word, but they are tightly
integrated into the workbench. More than one instance with editor type can be
exited at one time in a workbench window. Views allow users to browse resources in
a hierarchical way; help to open editors; and display the objects' properties of
active editors. Unlike editors, there can only be an instance with special view type

in a workbench window. Once a view is modified, its corresponding model would be
changed, and the new features will be reflected in other views simultaneously. Views
and editors are tided up closely by focusing on the same objects. Views support
editors by providing information about the content in the currently-selected editor;

and results of modifications could be exhibited via views.

The workbench of XArch system which is a single application window allows to
represent a number of different sorts of views but one editor at any time. The
workbench is base on Rich Client Platform (RCP), which is designed to serve as an

open tool platform. Its major advantage is giving users the chances to build or
extend any client applications by themselves. That is to say, except for the existing
editors, you can add new functions flexibly by a set of extensible interfaces. Fig,6.3
gives you a glance at views and editors. On the left workbench, outline view
navigates you to the target document with a hierarchal structure. The property view
on the right shows items' attributions. Any modifications that can be made in it

6 Software Architecture IDE 197

such as editing a property value or changing the binding between two components
are saved immediately. The bottom pane is a log view that records use r ' s concerns

and crucial system states.

Fig. 6.3 XArch system

The main area in the middle is an editor which is an interactive measure. You can
draw objects and drag them to any places at will in the pane. It is typically used to

browse or edit objects and the modifications made in it follow the o p e n - - s a v e - -
close model. To satisfy stakeholders' different demands, it is effective to provide
many views from diverse perspectives. The single pane supports containing
different types of views in a tagged note. You may alternate views by choosing
different tags, as you can choose logical graph or physical graph in this system.

6 . 2 . 2 Model Layer

Model layer is the kernel of the systern, for it covers the most essential functions
and assists to realize them. It aids IDE to address how to model system
architecture. Before explaining its working mechanism, we give an account of several

elements in the layer.
ADL document is the input of the system, which is a software architectural

description. Some IDEs limit ADL types, so it is necessary to modify its grammars
slightly to make compatible. You can refer to Section 4.2 to get an explicit
explanation of ADL. Unlike common compilers which translate source codes from a

high level program language to a lower level language (e.g, assembly language or
machine language), compiler here is an architecture analysis tool which converts a

198 Software Architecture

software architectural description language to an architectural model. The compiler is
likely to perform many or all of the following operations" lexical analysis, parsing,
semantic analysis, mapping, composition. Lexical analysis is a processing of a source
document as input to produce, as output, a sequence of symbols called token list.
Parsing, formally named syntax analysis, is the process of analyzing an input
sequence in order to determine its grammatical structure with respect to a given
formal grammar. Semantic analysis is a pass that adds semantical information to the
parsing results and performs certain checks based on rules. Mapping is a converting
process that mapping ADL notations to model~ s counterparts with particular
regulations such as a Mapper document. Composition logically follows the mapping
phase, in which the components or modules are generated. In such a case, it is
relatively easy to form a system model. During the above phases, a simple check is
preformed. It enforces constrains implicit in type information, component
attributes, relationships among modules and so forth. Validator which is the major
checking tool detects semantic errors to guarantee the latter processe ' going
smoothly. It supports explicit specification of criterions, and provides means for
their checking and enforcement. Schema defines a series of rules to describe the
document structures and data structures. It is a guard to judge whether the document
or the data is valid or not. When the above conditions are ripe, modeling is assured.
A system can be simplified and abstracted into several models. Different models
may hold different kinds of views. In this case, stakeholders can focus attention to
their concerns and inspect system from various perspectives. The system
architecture can be modeled with a special structure like a tree or a graph. Which is
the most proper structure depends on the practical circumstances and the concrete
requirements. Mapper is a group of regulations which abstract ADL~s elements and
their attributers. It plays two roles, and each affects on a single layer. One is
helping IDE to recognize ADL notations, that is to say, in the mapping phase. ADL
notations will be decomposed and classified according to some specifications, and
then endowed with abstract meanings which IDE can understand. Another role
relates to the model visualizing, since it defines the rules about how to portray the
model. Generally, it is a key factor in the p rot otyp e.

In XArch system, only ADLs written in the format of XML, definitely
speaking, FEAL-compatible ones are accepted, which simplifies the work on
language parsing. When a language does not confirm this rule exactly, it would be
adjusted to follow FEAL' s expected structure requirements. The system aims at not
only describing architecture with multiple views, supporting conversion between
ADL and model, but also offering analysis, validation and serialization of the
architecture. The validation contains two requirements, for a XML document holds a
set of strict formal criterions to satisfy any kinds of application needs. There are
two kinds of criteria used for it. One is requested to obey XML grammar
constraints, following which it is called a well-formed XML. Besides, in order to
express the data information and satisfy requirements adequately, it is necessary to
define structure rules, following which it is called validated XML document. The

6 Software Architecture IDE 199

X M L schema is just the rules which are used to validate the X M L document. The
X M L file must be confirmed to be a validating one before a further process.

Fig. 6.4 The relationship among ADL, FEAL and MODEL

Besides being used as a software architecture IDE, the XArch sys tem also
contributes to extension as a particular tool platform. This distinguishing feature

incarnates two aspects. One is a new ADL can be defined or new features of A D L

can be suppor ted rapidly. The upper model contacts with an intermedium directly

instead of ADLs. (Fig,6.4 shows the relationship among ADL, FEAL and MODEL.)

A D L s ' elements must be mapped into other forms, FEAL Element Categories

(FEC). It is a category of elements defined in F E A L ' s description through
abstraction of A D L s ' notations. Almost all of the further operations are based on

it. In this situation, if only the mapping from ADLs into FEC is valid, whichever

ADL is not care. In this way, new ADLs and features can be suitable for use as
usual. Another one is the XArch sys tem provides a series of extensible
visualization-editing interfaces. With this flexible function, you can display a new
visual element facility by defining a new object rather than a hurry-scurry handling,

6 . 2 . 3 Foundational Layer

This layer likes a substantial cornerstone to suppor t the sys t em building, It collects
hardware and software environment to sustain sys tem running; at the same time, it

manages all resources during runtime automatically. Generally speaking, a common

PC is enough to run the system; operating sys tem is able to provide enough

software equipments; nevertheless, some IDEs may need more. To cite an instance,

ArchStudio 4, an Eclipse plug-in, must run in Eclipse, a Java development
environment.

200 Software Architecture

6 . 2 . 4 IDE Design Tactics

Existing IDEs have put the greatest emphasis on visualization and analysis of
architectures, however, some supports more powerful functions such as refinement,
implementation, and dynamism. Our IDE proto type provides a framework and aids
developers to realize an IDE with sufficient functions. IDE design is a brainstorm
with researchers' great efforts which could be summarized into three tactics.

�9 IDE design is a target-oriented process that needs concentration on specific
requirements. The IDE design process is a software development process in which
the requirement acquirement phase is necessary and primary. Only with the
exploration of practical demands, developers can have a clear and definite design.
You should consider many matters from IDE itself to end-users. What problems can
IDE address? What functions can it perform and how is it measured? What is its
structure? Which kind of ADLs and architecture styles is suitable? Who will use it?
The questions and any others act as a guide leading developers to a right design.
Additionally, in view of future extensibility, it is a necessity to prepare enough
extensible API for advancement. Once a new requirement specification appears, a
strenuous functionality-based redesign would be avoided.

�9 To design an extensible IDE, it is necessary to category the aspects for
generic and specific issues, upon which decisions about modules and layers are
driven. The generic part is the fundamental for all IDEs like support environment,
user interface and so on. Nevertheless, different IDE directs at different domains and
solves distinct problems. In this case, IDE has its own unique parts. For example,
Rapide's development environment allows visualization of an architecture's
execution behavior by building an executable simulation of the architecture and
providing tools for viewing and filtering events generated by the simulation. In
particular, it uses simulator tool to build the simulation and its Animation Tools to
animate its execution. SADL's assistant tool provides support for refining
architectures across multiple levels of abstraction and specificity. It requires manual
proofs of mappings of constructs between an abstract and a more concrete
architectural style. After that, it automatically checks whether any two architectures
described in the two styles adhere to the mapping, (Medvidovic, 2000)

�9 Our IDE pro to type ' s usage. To extend a function, you need add notations or
constructs to ADL definition that require FEAL ' s support. After that, ADL-
specific functions should be implemented as plug-ins to be dynamically added into
our IDE. At the same time, schemas and Mapper documents which act as a middle
bridge should be modified to meet new concerns.

6 Software Architecture IDE 201

6 .3 ArchStudio 4 System

6 . 3 . 1 Introduction

It is practically impossible to illustrate all of the popular software architecture
IDEs. The sheer variety and the rapid evolution of them would require quite a book
to discuss. So we have tried to emphasize a particular tool, ArchStudio 4, on behalf
of others.

6 . 3 . 1 . 1 A Brief History of Software Architecture IDE

Revolutions of Integrated Development Environment have not been interrupted
since the first IDE created for BASIC. For years and months, its definition has been
shifted from initial doing simple development in front of console or terminal to
current being a single program in which all development can be done. It is not a
command-line tool anymore; it provides typically large numbers of features for
system design, modification, compilation, deployment, validation, implementation
and evaluation. Its development course could be fall into three successive phases.

The first phase is the period of repository-centric IDEs (Khare, 2001). In such
stage, different tools would work upon a central, shared database representing the
product-in-progress. The archetype of this generation was the Stoneman reference
model for the Ada Program Support Environment. Interlisp can be seen as one
instance of this approach with suite of tools operating on a shared parse-tree. A
versioned file system was another popular variant, notably Revision Control System
(RCS). Continuing the ascent, the second generation of process-centric IDEs
emerged in the 1980s which took relations between development processes and their
associated workflows into account. Tools such as Marvel assisted developers by
automating basic process steps and coordinating the work of tools "outside" the
development path proper. In the extreme, IDE support tools maintained only those
relations, as in the Chimera Linkbase. Nowadays, we see the current era as the
advent of architecture-centric IDEs that control the evolution of software
throughout its lifecycle using architecture descriptions as its primary unit of
discourse. As an example, ArchStudio assumes the existence of versioned
repositories and process automation in its foundation, and so focuses on the design,
evaluation, implementation, and editing of software architectures. Supporting tool
integration in this generation now requires an open, hypertext web representing the
entire product, from architecture down to development artifacts. This architecture-
centric approach represents a major new trend in software engineering,

6 . 3 . 1 . 2 What Is ArchStudio 4 and What It Can Do

ArchStudio 4 is an 0pen-source architecture-oriented software architecture-
integrateddevelopment environment created by the Institute for Software Research
at the University of California, Irvine. It creates and manipulates architecture
descriptions expressed in the xADL 2.0 architecture description language, xADL 2.0

202 Software Architecture

is a XML-based ADL (Dashofy, 2005), which is defined in a suit of XML schemas.
As such, xADL 2.0 architecture descriptions are simply XML documents that
Conform to the language defined in xADL 2.0 schemas. ArchStudio 4 is implemented
as a set of Eclipse plug-ins and runs on Windows, Unix/Linux, MacOS, and other
platforms that support Eclipse and Java. Founded with the core of its predecessor,
a mature tool, it adds many excitingnew features and performance enhancements. It
distinguishes from previous tools with special features: extensibility, imp lerm~tation, and
engineering. ArchStudio 4 ' s primary goal is extensibility for settling the "one-fit-
all" problem, which we will interpret in detail later. In the terms of implementation,
it successfully accomplishes its development by using itself. It treats the
development process as an engineering not a common artifact for it takes
development lifecycle, architecture style and any other software engineering
concepts into account.

Generally speaking, its significant effects in architecture come through system
modeling and meta-modeling. That is to say, it not only directs to modeling,
visualizing, checking and implementing software architecture but also gives a great
support for these functions' future extension.

�9 Model : As a software architecture development-aided tool, ArchStudio 4 ' s
primary function is the model which allows stakeholders to document or
portray the design thought of the system. Model abstracts system into a
framework at a high level that is similar to a blueprint. The design result,
architecture model, is stored and manipulated in a XML format; it can be
investigated from different viewpoints with diverse ways. Superior to other
tools, ArchStudio 4 for specifying architectural type consistency, hierarchical
modeling, product-line modeling and capturing architectural changes over time.

�9 Visualize: ArchStudio 4 provides different visualizations, like views and
editors for contemplating models. In this case, stakeholders are able to pay
close attentions to their concerns. Interacting views and editors to visualize
architectural descriptions in textual or graphic manners, such as Archipelago,
ArchEdit and Type Wright. In this way, it provides different perspectives
for inspection and interaction with more chances of communication and
understanding.

�9 Check: ArchStudio 4 supports to analyze and test architecture with a
powerful tool , Schematron which allows complex architectural tests to be
specified in about a dozen lines of code. It runs suites of tests on architecture
to check it for consistency and correctness. The Archlight framework
provides a way to automatically test architecture descriptions against many
different criteria. Errors can be detected and displayed, and users can be
navigated to the site of a problem in any editor with a few mouse clicks.

�9 Implement : It helps to tie architecture to implemented systems.
Interestingly, ArchStudio is realized with its own architecture-centric
thoughts and notations. ArchStudio' s architecture is specified in a xADL 2.0
file, and this file is part of the ArchStudio implementation. Whenever

6 Software Architecture IDE 203

ArchStudio starts up on a machine, its architecture description is being

parsed, and the information in that description is used to instantiate and

connects the components and connectors in the architecture.

Fig. 6.5 xADL 2.0 and extensions

Beyond that, it provides welkdef'med extensibility mechanisms attributed to the

fact that it is based on xADL 2.0, which is as useful as an ADL by itself, and in

particular, extensible to support applications and domains, xADL 2.0 is modular,
rather than monolithic. Rather than defining syntax and semantics monolithically in a

huge block, it decomposes modeling features into modules with X M L schemas. Four

modules relate to a common core, and the five parts make up the whole sys tem (Fig,

6.5). For example, components and connectors can be broken up into modules which

are defined in XML schemas. To date, modules have been developed for capturing

traditional concerns like components and connectors along with more innovative

concerns such as product-lines, implementation mappings, architectural states, and

so on. Tools read schemas and automatically generate a data binding library that

provides a foundation for other tools. Thus, users can extend the xADL language

with new features and automatically generate libraries used for building tools that

interact with those new features.(Fig,6.6)(Dashofy,2007) In a word, xADL 2.0 allows
developers to def'me new semantics and rules by themselves to capture more data

and meet new demands; if current tools and notations are not Sufficient for a
particular project, ArchStudio 4 and xADL allow integrating new ones to provide

effective support to capture particular concerns.
�9 Extensibly Model : ArchStudio 4 has pursued extensible model when it came

into being" It introduces xADL that is the first extensible architecture

description language, extended by adding new X M L schemas. With the
addition of new schemas, it can be extended to support new specific concerns

and modeling needs. New elements can be added to the core xADL 2.0 from

time to time when developed and contributed.
�9 Extensibly Visualize: Visual editor has an extensible plug-in mechanism for

adding editing support with new ADL elements.

�9 Extensibly Cheek: Users can write new tests in the Schematron constraint

204 Software Architecture

Archipelago
ArchLight

I Ar " ~ / i

Other tools

I
I

. xArchADT Q DataBandingLibrary)

Fig. 6.6 Tools of ArchStudio 4

language, and can integrate new analysis engines to check these properties. In
keeping with ArchStudio 4 ' s extensible nature, all tests are provided by
Archlight plug-ins, and users can add their own tests through plug-in API.
Archlight ships with the powerful Schematron XML constraint engine,
adapted to integrate other engines seamlessly into the Archlight user interface.
(Fig,6.7)

�9 Extensibly implement : Users can bind their architectures to the flexible
M y x framework, or use their own. M y x is an architecture style in which
ArchStudio 4 is build. The goal of the " M y x " architectural style is to serve
as an architectural style that is good for building flexible, high performance
tool-integrating environments. (Myx-whitepaper) It is a set of rules for
composing the components and connectors of an application. It provides
patterns of composition for synchronous and asynchronous interactions
among components. It also provides rules for what kinds of assumed
components may make about each other, ensuring a directed/layered ordering
Of dependencies among components. By adhering to these constraints, M y x
applications receive certain benefits. Components remain relatively
independent from one another, and it is easy to reuse components.
Components only communicate through explicit interfaces, so it is easy to
reconfig components in different context without recoding, Dynamic proxies
and event pumps can be used to connect and disconnect components at run-
time.

6 . 3 . 2 Insta l l ing ArchStudio 4

�9 Hardware requirements
N o one can tell exactly how much hardware is enough. As is know to all, the

configuration of hardware depends upon concrete practical requirements, such as the
scale of programs you will run, the expected amount of running time and so on. As
for ArchStudio 4, the general hardware configurations, like Pentium HI, 128MB
RAM, are enough for performing,

6 Software Architecture IDE 205

Fig. 6.7 Extensible checking tools

�9 Software requirements

ArchStudio 4 is based on the Eclipse, a java open-source development platform.
It can be run at any operation system that supports Eclipse, such as Windows
2000/XP, M acOS. Besides, the following three items are necessary, which are a JRE

version 1.5 or better, Eclipse version 3.2.1 or better and ArchStudio 4 itself. You can

download these tools by visiting their official websites, then set up them by guiding,
You should assure the availability of them and the network. Once Eclipse runs, you

can install ArchStudio 4 at once.

�9 Steps of installing ArchStudio 4
The installing process is easy with the guides. To set up ArchStudio 4, follow

these steps:
�9 In the main perspective of Eclipse, click Help in the upper menu bar and

choose Software Updates ---~ Find and Install'--.
�9 Choose the option: Search for new features to install in the Install/Updates

windows.
�9 In the Install dialog box, click New Remote Site...; then fill in the Name field

with a name and fill in URL field with http://www.isr.uci.edu/projects/archstudio-
update. Affirm this information and click f'mish.

�9 Once a license-queried dialog box is displayed, you must agree the rules for
further steps. At last, click f'mish to accomplish the installation in the summary

dialog,
At this time, wait for Eclipse downloading ArchStudio 4 and any other

necessary features. A f'mal confirmation dialog displayed asks you to confirm

installation of the download. You will be asked to restart Eclipse and choose Yes to

restart at once, or No to restart later. When it restarts, on the main menu bar, click

Window in the upper menu and choose O p e n perspective ---~ other---~ ArchStudio,
f'mally, ensure your operations. At this moment, ArchSutdio 4 is installed

206 Software Architecture

completely and you can set about enjoying it. A screenshot of the ArchStudio 4 is

showed in Fig.6.8.

Fig. 6.8 A screenshot of ArchStudio 4

6 . 3 . 3 ArchStudio 4 Overview

After installing, you can take a look at ArchStudio 4. Usually, w e s e p a r a t e
ArchStudio 4 into two parts according to its functions. The minor part covers
projects, folders, and files which like a housekeeper to manage resources. The major
one is the workbench of ArchStudio 4 on which all operations is performed. It is a
single application window that at any given time contains several different types of

pane. The paragraphs below will give an introduction of them.

6 . 3 . 3 . 1 Projects, Folders and Files

In order to solve the problems of consistency among cross-platform systems,
researchers make use of an abstraction mechanism above the native file system.
Specifically, it uses projects at the highest level, and contains folders under the
projects instead of using the hierarchy of directories and sub-directories, each of
which contains files. Each project corresponds to a sub-directory of the root-
directory and contains folders and files; normally each folder corresponds to a sub-
directory of the project directory, but a folder can also be linked to a directory
anywhere in the file system. All resources can be categorized into projects, folders
or files. In fact, none of these three categories is specialized to Eclipse. The
managing way has noting to do with Java, C + + , or ADLs, and it is an effective
method of storing value data.

6 Software Architecture IDE 207

Moreover, it is important to know the position where your files locate, for you
may edit, cut, paste and move them manually, or make clear how much space they

occupy in your disk. When you start a project, you will be asked for a workspace
to locate the directory where it stores all project files, including ArchStudio 4

projects that contain xADL files; choose an independent document to save all

resources.

6 . 3 . 3 . 2 The Workbench of ArchStudio 4

The workbench is the main window that appears when you start ArchStudio 4. It

allows you to work with projects and navigates them. We can categorize the

modules of the workbench into three kinds: views, editors, menus and toolbars.

Now, we will give a detailed comment one by one.
Views

At a glance of the ArchStudi0 4 ' s interface, you may fend four main panes occupy

most of interface room. They represent different kinds of views with their own

responsibilities. The main views contain navigator view, outline view and some

special ArchStudio 4 views. For more details on view definition you can refer to the

second section.

Fig. 6.9 Navigator view Fig. 6.10 Outline view

�9 Navigator view
The pane at lower left is called navigator view; it displays the file system

navigator which manages projects and files and represents all projects in a

hierarchical way. The abstraction mechanism mentioned above is incarnated in it.

With this view, you get a clear overview of resources and their relationships. You

can fold or unfold files with addition and subtraction icons; you can also select or
operate editing, inspecting or managing on them. Moreover, team operations are

supported.

�9 Outline view
The outline view is on the upper left, showing the structure of a selected file in

208 Software Architecture

the navigator view with a tree structure. We can found the tree-based user interface

of it to be cumbersome for hierarchical architectural compositions. The contents in

this view are structural items of sys tem architectures such as architectural types ,

components, connectors and links. You can design architecture with these off-the-

shelf structures with ease without a sharp debate about a right abstract level.

�9 ArchStudio 4 views

The special views of ArchStudio 4 are on the lower right. In this area,

ArchStudio 4 launcher is on a tagged panel with other five views: File Tracker View,

Archlight Issues, Archlight Notices, Tasks, File Manager View. We can divide this

pane into two parts: the tagged bar in the top and the display area below. The

upper bar contains five tags with v iews ' titles and the contents of the selected one

would be showed in the display pane.

Fig. 6.11 ArchStudio 4 views

�9 ArchStudio 4 Launcher

The simple duty of the launcher is to open documents and invoke tools. It
doesn ' t know anything about editing, running, or checking; it only helps to navigate

files to any required operations. Any tasks it c a n ' t handle will be delegated to
editors. On the upper right, three shortcut but tons are located to facilitate users.
The first one with a document icon is used to create a new architecture description

file. The second one has a link to ISR website, and the last one is for visiting
ArchSutdio 4 website. Under the logo of ArchStudio 4, there is a collection of
several editor buttons including ArchEdit, Archipelago, Archlight, Selector and T y p e
Wrangler. To open a file, you can drag it from the navigator view and drop it on the

target editor, or click on an editor button and choose which you want to use from all
resources listed in a dialog box.

�9 Archlight Issues
This view lists semantic and syntax errors detected by the validator. ArchStudio

includes and adapts the Schematron X M L validator for use as an architectural
analysis engine. By right clicking the prompts , you can not only catch the detailed
information of the errors but also track and think over them in more than one

6 Software Architecture IDE 209

aspects. There are four kinds of tracking manners, namely, the selector dialog box,

the type wrangler dialog box, ArchEdit view and Archipelago view. In this pane, the
right column titled with Tool shows the checking tool, Schematron. It allows tests

to be defined as compact constraints over the XML structure of xADL documents.
It filters errors revealed in the middle column. The errors' information would not be

disappeared until you correct them. If you test another file following closely a text,

the latter mistakes will be listed behind the former ones. So it is unobvious to
separate the new from the old.

Fig. 6.12 Archlight issues

�9 Archlight Notices

It records the activities of Schematron from the moment when it starts. The

information of initial state and Xalan version is always exhibited every start.
Additionally, if a test is carried out, two pieces of news about the process will be

added.

Fig. 6.13 Archlight notices

�9 Tasks

At the bot tom of the window is a Tasks view. It is useful for keeping track of

what needs to be done in a project. Tasks are added to this list automatically as

ArchStudio 4 encounters errors in your code. You can also add tasks and set

priority to the Task view by right clicking and selecting context menus. The view

lists the task items with brief descriptions and used resources; it supports a

210 Software Architecture

relatively convenient way to keep a task list for projects.

Fig. 6.14 Tasks

Editors

ArchStudio 4 integrates a suit of editors operating on xADL documents much similar

to a word processor operating on text documents. The major difference between
them is that ArchStudio 4 furnishes synchronism which means that a change in any
editor will be reflected in others instantly. ArchStudio 4 includes a plug-in-based
framework for extending new editors. All aspects of the editor are constructed using
the plug-in-based framework, allowing plug-in packages to be added to support new

xADL schemas. We will elaborate on the effective editors supplied by ArchStudio 4.
�9 ArchEdit
ArchEdit is a syntax-driven editor to describe architectures in a tree format

without coding. The contents of its user interface are generated automatically based
on the underlying xADL schemas. It resembles a middle platform which allows
architects to choose off-the-shelf architectural-level elements of the software
system, and add them to their own concerns easily. The elements can be quickly
constructed, combined with modeling features which are encapsulated in modules

and conceal XML details; moreover, it is feasible to integrate new features as
necessary. This helps developers release from designing right elements at the right

level. ArchEdit dose not concern the semantics of the elements. It only generates
behaviors and interfaces according to XML schemas, adapting tO future extensions.
Therefore, it will not be changed when new schemas are added or modified and can
support new schemas automatically.

�9 Archipelago

Archipelago is a semantic editor to graph architectures by the box-and-arrow
way like Rational Rose. However, the major difference is that, the graphical
depiction in Archipelago is an integer with rich meanings rather than pictures simply
pieced together. The ordinary rectangles play vital roles in the architecture, and the
relationships among them must conform to some standards instead of linking any

6 Software Architecture IDE 211

elements. The Fig.6.18 illustrates a simple sys tem architecture in Archipelago.

This editor provides a click-and-point style to editing interface and primarily

uses a context user interface rather than common toolbars or menus. Context menus

are generally brought up by right clicking on the elements to be expected in the
outline view. Double clicked in the tree structure view, the element will be displayed
in the right editor pane which is a graphical editing canvas. Right clicking on the

blank canvas could create new elements; right clicking on the elements could go over
and edit their features. The graphical editing canvas supports arbitrary zooming and

scrolling, Scrolling can be done with the scrollbars, and zooming can be done with
the zoom dropdown box in the upper right comer of the canvas.

Additionally, almost all of the tools can be coordinated compatibly. Archipelago

can work well in combination with ArchEdit or any other editors. On the one hand,
Architecture descriptions created in Archipelago can be fine tuned by ArchEdit , or

ArchEdit can be used to access schema e l emen t s not suppor ted directly by

Archipelago. On the other hand, all elements described by ArchEdit have relative
objects in the Archipelago and refmements of those objects will be reflected in the
ArchEdit at once.

�9 ArchLight

Archlight is a framework of components for integrating architecture analysis
tools into ArchStudio 4. It provides a unified user interface for users to select and
run tests that check various propert ies of architecture descriptions.

Several analysis tools in the Archlight framework provide users a unified suite o f
tests that can be run over architecture documents. These tests are presented

hierarchically in a tree structure. Each test is a node in the tree. Due to the wide

variety of architectures, architectural styles, and stages of development, not all

documents will be expected to pass all tests. Therefore, Archlight gives the ability
to choose any subset of tests to a given document.

Fig. 6.15 Archlight

There are three states of the tests.
�9 Applied /Enable test: This test is applied to the document. This means

that the user expects that the document will pass this test. It will be run

212 Software Architecture

when all tests are run on the document.

�9 Applied /Disable test: This test is applied to the document. This means

that the user expects that the document will pass this test. Unlike the first

one, however, this test is temporarily disabled. It will be run unless no

tests are run on the document, and issues that would be identified by the

test will not be reported until the test is re-enabled.

�9 Unapplied test: This test is not applied to the document. This means

that you do not expect that file document will pass this test. This test will

not be run when all tests are run on the document, and issues that would

be identified by the test will not be reported.

The suite of available tests is determined by the installed tools and the tests that

reported they can run. Whether tests are applied, disabled, or unapplied is a

proper ty of each document. Each document stores a list of applied and disabled

tests. I f a document is encountered that references unavailable tests, those tests will

be inserted into the tree as Unknown Tests. Unknown tests will not be run but they

will remain associated with the document unless they are unapplied.

Each test has a unique identifier, called a UID. This is simply a string that

identifies the test. In general, the user of Archlight will never see these UIDs which

are created and managed by test developers. A t e s t ' s UID generally will never

change, even if the t e s t ' s name, purpose, or location in the tree changes. Each

analysis tool is expected to perform one or more tests. These tests are referred to

by their UIDs. Each document stores a list of test UIDs and whether they are

applied or disabled. If test UIDs are found in a document but no tool reports that it

can perform a test with that UID, the tests will become Unknown Tests in the

Archlight GUI.

�9 Selector

The full name of Selector is Product-Line Selector. At first, it is a necessity to

introduce the conception of product lines. Software product resembles a part of a

product line. A product line is a family of related software products that share

significant portions of their architectures with specific points of variation. However,

a single product line may contain products that are localized for specific regions or

represent different feature sets for marketing purposes. The Product-Line Selector

sculpts product lines down to smaller ones or single product by extracting any

subsets of the whole architecture when you need to reduce the product lines to

adapt new architectural descriptions.

The tool provides graphical user interface to bind the variables to values. And,

you can click the button to perform the selection process. There are three kinds of

performances: select, prune, version prune. Users can choose a n y one or more to

satisfy needs. It is necessary to highlight the version prune. A version of the

architectural model can be opened in ArchStudio for editing or for instantiation by

providing a WebDAV URL to ArchStudio. An architectural model in ArchStudio

consists of a single xADL 2.0 file. The current version of the architecture will be

kept in the trunk directory, while versions will be kept in tags and branches

6 Software Architecture IDE 213

Fig. 6.16 Product-Line Selector

directories. It is important to point out that the workbench only shows the

organization of directories for one architecture, but in reality the Subversion

repository can contain any number of architectures for different systems. With the

function of version prune, users can choose any version of the architecture (Nistor,
2005).

�9 Type Wrangler

Type Wrangler provides a view of architectural types that makes it easier to

achieve type consistency. It not only assists users to add or remove interfaces ~md
signatures which can be mapped or unmapped by clicking mouse, but also helps

developers to judge whether components and connectors match their types properly
or not.
Menus and toolbars

In addition to views, editors and other tools, several other features of the

Workbench user interface are worthy to be mentioned: the main menu, the main
toolbar, and the shortcut toolbar. Like the views and editors, the workbench 's menu

and toolbar can change depending on the tasks and features available in current
windows.

The main menu appears at the top of the workbench, below the title bar. Users
can invoke most actions from the main menu or its submenus. Below the main menu

is the main toolbar, which contains buttons that provide convenient shortcuts for

commonly-performed actions. These tool buttons don ~ t display labels to indicate

what they do unless you put the mouse pointer over them, showing a short text
description to display as a hovering tool tip. In addition to the workbench menus

and toolbars, some views or editors can also have their own specific menus. You can

select any operations by clicking on the icon. This action lets you perform

behaviors on the window. The menus and toolbars here provide a quick way to

214 Software Architecture

Fig. 6.17 Type Wrangler

manage and operate projects.

6 . 3 . 4 Using ArchStudio 4

The content of this passage is guiding users how to use ArchStudio 4 effectively
throughout a development process. Along the way, we will illustrate this issue with
a simple application program which is a software system used to drive a television
set. In order to achieve our purpose, we must abide by the underside essential steps.
First of all, you should clarify practical requirements; then analyze system
architecture; after that, model the system by creating architectural elements and
constructing topology; finally, check this model. If it is necessary, you also can
extend much more functions on the base of the old system. We define this system
with the following basic requirements (see Fig.6.18).

�9 The system has two tuner programs: TV tuner and picture-in-picture tuner,
both of which include a communication interface. All information and data are

transported throught it.
�9 The system has a driven system,which drives the infrared receiver detector

used to pick up signals from the remote control.
�9 The above three sub-systems communicate with a middle system that allows

the infrared receiver to send signals to two tuners for supporting the display
of both channels simultaneously.

After acquiring application requirements distinctly, we set about analyzing
system architecture. One of the most important tasks is choosing or defining a
suited architecture style. Considering this mini-system just delivers and receives
signals, C~ style is a judicious option which can satisfies those particular needs

6 Software Architecture IDE 215

Fig. 6.18 Architecture of TV system

perfectly. In C2 style, a set of principles govern whether system elements are
composed legally or not; in this concern, s y s t e m ' s behaviors could be conf'med.
Specifically speaking, in this example, the system needs four kinds of elements:
three component-type instance and a connector-type instance: TV Tuner
component, Pic Tuner component, Infrared Receiver component and TV connector.
Every element just has two semantically rich interfaces whose responsibility is
delivering and receiving signals. Every component or connector has a clear top and
bottom point which limits interaction manners. Followed with choosing style and
any other analysis, the significant process is how to model with IDE. First of all,
like building a C or Java project for a scientific management of documents, you also
should create a new ArchStudio project, and then add a new file according to the
prompts step by step. Name and store them in your disk where you can find all
files created during programs running, The follow steps are designed to tutor you
how .to create a project.

�9 Click File and choose New in the main menu or right click in the Navigator
view to bring up a context menu and select New Project.

�9 In the New Project dialog box, select a general project and name it, and then
click Finish.

�9 Click File and choose New in the main menu or right click in the Navigator
view to bring up a context menu and select ArchStudio Architecture Description.

�9 In the New Architecture Description dialog box, select a project you expect
and name the file, at last, click Finish.

Now, you can start to model the system. Opening the new file with ArchEdit,
you can see an empty fold named XArch without any sub-files. By righting click it
you will find some ready-made notations which are designed according to the XML

216 Software Architecture

schemas; add them and further add sub-notations to enrich the architecture. In terms
of design ArchTypes, we should take component type, connector type and interface
type into consideration. An architectural type consists of a unique identifier and a
textual description along with a set of signatures. Signatures are prescribed
interfaces. Two components or connectors of the same type should have the same
types of interfaces; the component or connector interface should have the same
interface type as its signature. Furthermore, you may employ sub-architectures for
component or connector in a high level to design large scale systems. In this TV
system, there are three component instances which fall into two kinds of component
type: Tuner Type and Infrared Receiver Type. And further, describe TV connector
type as connector type. For interface type, it ~s ideal to separate Top Interface
Type from Bottom Interface Type, because every element has a top and bottom
side. With regard to modeling ArchStructures, many perspectives should be
described. Two schemas about Structure & Types and Instances support the
following features for its design (Dashofy, 2005).

�9 Components: every component has a unique identifier and a short textual
description, along with a set of interfaces. It has its own component type
which is defined later, and different components can share the same type.

�9 Connectors: Similar to components, connectors also have only a unique
identifier, a textual description, and a set of interfaces and own type.

�9 Interfaces: In these schemas, interfaces have a unique identifier, a textual
description, and a direction which implies the interface is provided or
required.

�9 Links: In architecture notations, links connect interfaces and every link has
two points to bind interfaces.

�9 Sub-architectures: Components and connectors can be intergraded into a
complex entirety. Composite components and connectors have internal
architectures, called sub-architectures.

�9 General Groups: Groups are simply collections of pointers to elements in the
architecture description. In these schemas, a group has no semantics. Groups
with specific meanings can be specified in extension schemas.

Take TV Tuner component for example, in order to simplify the model, we only
consider the necessary attributes and omit the rests. The component model refers to
the attributions such as ID, description, interface, type and so forth. Its type
belongs to Tuner Type; its interface type is bottom type; its interface signature
must be matched with the same signature of its component type. Aside from
describing this information, an easily neglected thing is instancing its type: banding
its type to the relevant type. You merely drag and drop the component to the target
type or fill in its type details. With bindings, changing a kind of type is
automatically propagated to all instances which are bound to it. Similar to TV Tuner
component, other elements are designed in this way. These obscure definitions can
be finished easily in ArchStudio 4, for it envelops ready-made functions such as
adding type, adding instance. The only thing you just do is right-clicking mouse to

6 Software Architecture IDE 217

put your design into practice. While, in the meantime, a more detailed descriptions
and constrains should be attached to them. You can follow these steps.

�9 Add the first level nodes to the root, XArch. At a minimum, the ArchTypes
and ArchStructure should be described.

�9 According to the analysis, three components (TV Tuner, Pic Tuner, and
Infrared Receiver), a connector (TV connector) and three links (TV Tuner to TV
connector, Pic Tuner to TV connector, Infrared Receiver to TV connector) should be
considered during ArchStructure design. While, to design ArchTypes, two
component types (Tuner Type and Infrared Receiver Type), a connector type (TV
connector Type) and an interface type (channel Type) should be taken into account.

�9 Set the features of these elements and bind the relative links among them. The
link only connects compatible direction interfaces, like in and out, but neither in and
in nor out and out. Once you ascertain the topology of the system, the fold,
RendingHints3, is created automatically with information of all hinted elements.

The last but not the least step is checking the model. Whether the architecture
model is complete or not? Does the interface link the right interfaces? Do two
elements have the same identifies? A group of uncertain factors should be assured.
Fortunately, ArchStudio 4 supports a checking tool, Archlight. Open the document
in Archlight and choose check sort; thevalidation process will give you a checking
report. Then you can track and correct errors. Additionally, it supports modification
of architecture at runtime by dynamically loading and linking new components or
connectors into the architecture. Supposing an error pointed out in the Archlight
Notice view likes the following Fig.6.19. How do you deal with it?

Fig. 6.19 Checking in Archlight

218 Software Architecture

First, you should get a more detailed prompt by right clicking the error. A
message box is presented, which said the interface type of Interface TV Tuner
Component on Component TV ArchStructure must be the same as the interface
type of its signature. According to this, you can be aware of basis information. To
further grasp error, you can focus on it through interface or component ways. Both
of them give four manners to inspect error. Maybe a manner is not omnipotent or
suitable. You can make full use of one or more ways. For example, if you choose
Type Wright, a description with a red cross is presented.

Fig. 6.20 Checking in Type Wrangler

If you select ArchEdit, you will be led to the element with mistakes. At this
time, you will modify the properties in the right editing pane. If you use Archlight,
a dynamic image lays emphasis on the mistakes with a red mark. With this smart
help, you can find faults visually and correct them quickly.

Once you carry out the validations, a fold named ArchAnalysis is created
automatically which you can find in ArchEdit view. It collects all elements tests and
particular descriptions. After validations, you can explore this artificiality with
various views and editors. Open the document with Archipelago, a structure view is
displayed. Open the document with Type Wrangler, all information of types is

managed. Open the document with Selector, you can get any sub-architectures, even
a single component or connector. At present, at a minimum, a simple software
architecture development process is finished. However, if necessary, you can extend
more functions.

6.4 Summary

This chapter specifies one of the most useful issues during software architecture

6 Software Architecture IDE 219

Fig. 6.21 Checking in Archipelago

development--IDE which likes a bridge between design thought and system
implementation. Before this software architecture assistant has appeared, in order to
describe system architecture, practitioners had no choice but to resort to formal
approaches. The work of remembering a great quantity of notations and grammars
bother developers; in the meanwhile, the results in the form of formulas are deficient
in visualization and explicitness. On the contrary, IDE smoothed away those
confused problems. There is no doubt that it acts an essential role, which has been
demonstrated by lots of facts. Suppose researchers developing a highly-complex
software architecture only with pen and paper, in particular, when requirement
changes or new circumstance need to meet, the degree of work difficultly would rise
at a geminate speed. We highlight its importance throughout this chapter. To
provide a comprehensive introduction of IDE for readers, we start with its
development history and end with a practical instance, ArchStudio 4.

At present, IDEs can fall into two categories: special and general. The first one
takes greater part, the IDE of which kind meets a single ADL. Certainly, flexible
requirement needs various solutions. Consequently, more and more IDEs have
mushroomed for special purpose all over software domains. Though varied IDEs
focus concerns on distinct domains, the functional framework is in common use; it is
the real reason why we abstract the prototype of IDEs for the purpose of making a
great convenience for IDE development. The latter kind is pursuing for universal
IDEs. It directs at the tough question in the world of software architecture: can a
single tool support the diverse array of issues, concerns, and stakeholders that occur
in complex software systems? Fortunately, with the help of a foundational support

.

220 Software Architecture

platform, powerful extensible functions and some intermediary, this hypothetical
tool is not a fantasy and some embryos have been emerged, for example, XArch
system, ArchStudio. However, for current immature technology and approach, many
challenges and obstacles may be encountered during its tortuous growth. Continuing
the ascent, the architecture-oriented software development approach indicates that
architecture-centric IDE is a necessary trend in the future.

References

(Dashofy, 2007) Dashofy, E., et al. ArchStudio 4: Anarchitecture-Based Meta-
Modeling Environment. Companion to the proceedings of the 29th
International Conference on Software Engineering, Minneapolis, MN, US.2007:
67-68.

(Dashofy, 2005) Dashofy, E. M., Hoek, A. v. d. & Taylor, R. N. A Comprehensive
Approach for the Development of Modular Software Architecture Description
Languages. ACM Transactions on Software Engineering and Methodology
2005(14): 199-245.

(Khare, 2001) Khare, R,, et al. Xadl: Enabling Architecture- Centric Tool
Integration. Proceedings of the 34th Annual Hawaii International Conference
on Systems Sciences, Hawaii, US.2001:9053-9062.

(Medvidovic, 2000) Medvidovic, N. & Taylor, R. N. A Classification and
Comparison Framework for Software Architecture Description Languages.
IEEE Transactions on Software Engineering 2000(26): 70-93.

(Nistor, 2005) Nistor, E. C., et al. Archevol: Versloning Architectural-
Implementation Relationships. Proceedings of the 12th international workshop

on Software configuration management, Lisbon, Portugal.2005:99-111.

Evaluating Software Architecture

If you are just a researcher to software, maybe it is enough when you finish
describing architecture or communicate with other guys involved in software
development. However, it is mandatory to figure out whether the architecture will
lead a success. After all, nobody will reject to improve the chance of win before
taking a bet, normally with a great fortune in terms of millions of dollars as well as
company' s reputation and future. Therefore, evaluation is necessary, appearing as a
bridge between architecture and software engineering' s ultimate goals.

Nevertheless, the solution is not so obvious and easy to handle, considering
software ~ s complexity and interweavement of a series of objectives, some of which
stand against each other. You cannot sit at your workbench, input a list of
requirement and architecture description to your lovely computer and get the nice
answer. Completely automatic evaluation is still far away from us, which is the
reason why architect becomes the leader of almost every development team and the
top career in technique area. No generally suitable methods have been created.
Evaluating methods focusing on universe, if any, must be so general that they lose
actual effect in most projects or domains. Alternatively, a better idea to collect
wisdom of former architects and conclude several principles or activities irrelevant
to specific development and show creativity in applying them in your projects by
enhancement or adjustment.

In this chapter, we provide an initial insight of software architecture evaluation.
Here you can find the basis for evaluatior~, introduction to different evaluation
processes and a comparison among them. But anyone who wants to use them should
not copy them entirely, because the reuse elements are represented as thorough
understanding to architecture which is covered by'evaluation phases, activities and

techniques.

222 Software Architecture

7 .1 What Is Software Architecture Evaluation

7 . 1 . 1 Quality Attribute

Before we describe evaluation itself, we must clarify its target to predicate
software 's quality. More precisely, the purpose of the evaluation is to analyze the
software architecture to identify potential risks and verify that the quality
requirements have been addressed in the design (Li, 1993).

So what is quality? When you buy a television, you will pay attention to
whether there are flaws on its surface, whether it can response correctly and rapidly
when you push a button, the extent to which its color makes you feel comfortable
and the expected longevity. In general, three points should be noticed: Firstly,
quality is a combination of features that affect your experience. It is important that
functionality is only a non-dominant part of total quality. It is difficult to find a
television in the shop ' s shelf that cannot show anything, Secondly, many features
cannot be measured quantificationally, which means that it is almost impossible to
create a calculation-based model in describing and comparing them. W h a t ' s more,
different people may give different opinions to the identical feature 's appearance.
Take the television's example again, some people prefer flamboyant color, while
others believe that the color should be as closed as possible to the original video 's
capture. Finally, quality features have different priority with different things. A
television has no obligation to keep working if you drop it on the floor, but that is
not the case for mobile phones. For those important but conflicting features,
manufacturers should take trade off among them.

In software engineering~ quality attribute is referenced as the feature that can be
used to illuminate s o f t w a r e ' s features. In IEEE standard 1061 (IEEE, 1998),
software quality is defined as "the degree to which software possesses a desired
combination of attributes." Another standard ISO/IEC 9216 provides a quality
model, too. Commonly, several quality attributes have been used and referenced
frequent ly:

�9 Modif iabi l i ty is the quality attribute about the cost of system change,
measured in the range, workload and finance expense incurred by the change.
It contains function extension, capacity extension (e.g, to increase the number
of concurrent access), features deletion, data structures update (e:g, to add a
field in database schema), communication protocol adjustment, cross-
platform migration and so on. Much attention has been paid to the
modification in post deployment phase, normally in source code level, build
level (e.g. to use an alternative build option) and configuration level. Some
people refer to it as "flexibility" or "maintainabili ty". And some others
believe that portability should be listed as a separate quality attribute.

�9 Availabil i ty is the quality attribute about how software reacts when errors,

7 Evaluating Software Architecture 223

exceptions or failures occur. Here we separate these three concepts as error is
the situation that software stops its work for internal reason that can be
recovered easily (e.g. a server may reject an access if maximal access number
has been reached); exception means the input differs from the expected styles;
and failure is the status that system cannot recover without losing anything
(e.g. data, broken hardware). It is a common belief that software' s availability
can be measured in the probability of working in a good status. Here is the
general formula that supports this measurement:

M canT imeln Work
Availability= M ean T imeIn Work + M ean T imeT oRep aire

From this formula comes the terms such as "99.99% availability": But in the
reality, this measurement is too vague for architects in making decisions of
architecture design, because different errors, exceptions and failures need
different recover solutions. Some people refer to it as "reliability".

�9 Per formance is the quality attribute about reaction speed of a software

system, or other metrics that are directly decided by it. This attribute is the
crucial concern in military, control system and business information system.
For example, we can def'me a requirement of performance as "the system
must output the answer in 3 seconds if a specific event occurs" or "Sever
must deal 1, 000 requests in a second". Performance has competing
relationship with several other quality attributes, such as modifiability and
security, which is the main source from which careful trade-off occurs. Some
people refer to it as "efficiency".

�9 Testabil i ty is the quality attribute about the easiness degree to which
sys tem 's defects can be detected by tests. A great architecture should take
test into account. Considering the great amount of cost spent on test, special
concern on test in architecture level will lead to considerable payoff.
Currently, test guided by software architecture is the hot spot in architecture
area. A common knowledge is trapped in the confusion between architecture
evaluation and architecture test. In fact, evaluation is to deal with the
problem of assessment and comparison among candidate architecture
themselves, while architecture-based test tries to improve test effect with the
help of architecture. A common testability measurement is the effect and
efficiency of a test, such as "in 3 days finish the 65% execute paths of
module A".

�9 Usabili ty is the quality attribute about feeling, experience and efficiency of
which users complete their tasks through operating the software. In a short
word, it is the easiness degree to which users operate software. Beginners to
architecture always disagree that this attribute is affected by architecture and

insist that art designers and UI designers should be responsible for them.
However, the facts tell us that many successful features of usability need the
support of architecture, such as Undo-Redo and current popular Ajax,

�9 Security is the quality attribute about capability that software system

224 Software Architecture

defends unauthorized accesses or illegal operations. Attack is inevitable i.n
any cases under any environment, drawing special attention among the
stakeholders from system designers to end-users. During implementation,
Security-related codes often cross and interweave into components or
connectors that need security guarantee, resulting in a challenge to
architecture design.

The reason why we mention quality attributes is that software architecture is
the foundation upon which they are realized. Although someone argues that a good
architecture does not always result in a good realized artifacts meeting every
expected quality attribute, taking into account the contribution of detailed design
and implementation. I admit its correctness. However, a bad architecture must result
in a bad system without any doubt. It is impossible to implement a secure program
if you never prepare for it. Quality attribute is the fantastic idea that links software
quality and its architecture because a batch of architectural tactics has been
generalized and popularly employed. The fifth chapter of (Bass, 2003) provides a
comprehensive reference about them.

7 . 1 . 2 Why Is Evaluation Necessary

Barry Boehm said "Marry your architecture in haste and you can repent in leisure".
An awful architecture, as a matter of fact, pronounces pro jec t ' s calamity. Three
concerns lays in this point.

�9 As we mentioned in the first chapter, software architecture description is the
earliest artifact on which evaluation and analysis can be performed. To correct a
problem in this phase costs orders of magnitudes less than during testing and
deployment. After all, changing a notation in an architecture view is much easier to
carry out than modifying source codes on a large scale, which, thus, requires
additional cost that Should have been avoided. With comprehensive architecture
description, or even the partial one, we can simulate the sys tem' s runtime
behaviors, discuss several design ideas and infer the potential effects if architecture
applies to the final system. And all of these need only several additional days in the
whole project ' s duration.

�9 Evaluation is the last chance that hidden requirements are discussed and
complemented into the design. In short of communication perfectly and
understanding of software project, a great many stakeholders do not know what
they want exactly. In the requirement gathering phase, they may list several
demands, the most crucial ones they believe in. But after evaluation, their opinions
may entirely change, during which they start to be aware of some points they
originally specified are not so important, while some other concerns begin to draw
their attention. They are often surprised by the social power and get excited when
they feel the positive improvement taken by their participating. And architects,
during this activity, accept stakeholders' various ideas, some of which are not
mentioned in the requirement specification, and take trade off by adjusting the initial
architecture design (or comparing and choosing among several candidates). This is

7 Evaluating Software Architecture 225

also the good opportunity for him or her to deepen the insight of the to-be-built
system. Shortly, architecture evaluation clears the barriers among stakeholders, and
empowers them with open communication channels. The direct result is the
achievement of a commonly satisfactory system blueprint, which means a more than
half success of a project.

�9 Architecture is the center of development process, deciding the team
structure, work division, configuration repository, documentation organizations,
management strategies and, of course, the development scheduling, An unsuitable
architecture will draw a mass of mess when it must be modified to fit for the new
concerns or those defects not uncovered in the early phase. The consequence of
excessive cost spent on this alternation was accessed above. W h a t ' s more, the
whole team will face the terrible status that the project is out of control: More bugs
are introduced after original bugs are fixed; demoded work breaks team structure
which further disturbs lucid development; old plans and budgets are thrown away
but the new ones cannot be created in time; all the guys, including customers,
managers and programmers, expect vexedly for the end of this nightmare, but no one
gets the exactly the idea of the due date. Impatience, inversely, beats everyone' s
morale and further guides them to the abyss. What great if architecture is analyzed
before everything is happened!

Personally speaking, software architecture is destined to be evaluated, if it wants
to be applied in practice. In fact, numerous architecture models are created
specifically as the input of evaluation processes. Maybe experts who are
concentrating on well-formed representation Of architecture do not care about this
very much. But is there someone who wants to pay a big fortune into a game only
by guessing? Maybe in the gambling it is, but in business, people do that no more
than suicide. All in all, we need architecture evaluation.

7 . 1 . 3 Scenario-based Evaluat ion Methods

From the discussion above we make clear that architecture evaluation is a process
that judges whether an initial architecture description or a series of architecture
description candidates represent the specified quality attributes (collected both in
requirement gathering phase and evaluation phase). This is not an easy task because
quality attributes are different from length or weight, which has unified
measurement standards. Before evaluation is taken, we must define what the
measurement of quality attribute exactly is which ensures it can represent the
capability of software in meeting the requirements such as "We need an availability
of 99.99% ".

Less than a decade ago, two basis classes of evaluation methodologies, Measuring
and Questioning, were def'med in (Abowd, 1997) for architecture evaluation.
Measuring employs quantitative metrics by defming precisely the numerical scale to
the targets. Therefore, only those quality attributes which are easy mapped to
quantitative metrics can become the input of this kind of techniques, for example,
response time, throughout of a link in the network, etc. This class includes metrics,

226 Software Architecture

simulation, pro to type and experience. Another methodology Questioning provides

questions to check qualitative attributes, which expands its suitability to almost any
given quality attribute. This class includes scenario, questionnaire and checklist. No

doubt that we primarily evaluate architecture by Questioning techniques, which are

commonly supplemented by Measuring.
Most notable architecture evaluation methods are scenario-based. Scenarios are a

postulated set of uses or modifications of the system (Dobrica, 2002). Maybe you

are familiar with "use case" in analyzing requirements and directing tests at least.

But scenario is a superset of it, capable of covering any behaviors that can be

imposed on the final system, ranging from pushing a button and getting expected

answer within limit duration, to adding or deleting components to change sys tem' s
behavior during execution. In architecture evaluation, we use scenarios to represent a

concrete quality attribute. (Bass, 2003) provides a model to describe a scenario. Six
elements are adopted to normalize various scenarios into a standard form, facilitating

later evaluation processes:
�9 Source of stimulus. This is some entity (a human, a computer system, or

any other actuator) that generates the stimulus.

�9 Stimulus. The stimulus is a condition that needs to be considered when it
arrives at a system.

�9 Envi ronment . The stimulus occurs within certain conditions. The system

may be in an overload condition or may be running when the stimulus occurs,
or some other conditions may be true.

�9 Ar t i fac t . Some artifact is stimulated. This may be the whole system or some

pieces of it.

�9 ResPonse. The response is the activity undertaken after the arrival of the
stimulus.

�9 Response measure. When the response occurs, it should be measurable in

some fashion so that the requirement can be tested.

Fig. 7.1 Scenario representation model

But in practice, in the noisy and chaotic evaluation conference spot, it is
unrealistic to force all participants to provide their ideas in this style, particularly
in the case that most stakeholders do not have habit of limiting their vocabulary into
the formal one, which is the hobby of computer scientists or programmers. They
often open their mouths as soon as the idea comes out in their minds. But any

7 Evaluating Software Architecture 227

proposition should be able to be converted into the form above potentially. This
needs prolocutor, which is taken by architects in most time, to guide stakeholders ~

suggestion. The vague ones, such as "High security is required" should not be taken
as scenario because it is too trivial to find architectural tactics corresponding to it.

An advantage of scenario is that it is system-specific, which means it is not
limited by a domain, just like checklist techniques do. Scenario has sufficient
freedom in expressing sys t em ' s response to stimulus actuators. Wha t ' s more
scenario is capable of synchronizing multiple stakeholders ~ suggestions. It is
possible for different stakeholders to interpret similar cases from their own
perspectives, after which they are merged into a common scenario during a
redundancy elimination process. Table7 . 1 is an example of scenario list before
future evaluation activities.

Several considered evaluation methods use scenario, including SAAM, SAEM,

ATAM, ARID, etc. A systematic survey on scenario-based evaluation methods
applied in practice can be found in (Kazman, 2000).

Table 7.1 Example of Scenario List

Scenario No.

F1

F2

F3

F4

Scenario Description

Add a graphical editor to configure system.

Change underlying database from the centralized one to the distributed one.

Use CORBA to provide interface which can be used by other systems.

Enable 1,000 requests in a second.

You may have the question that having scenarios, why clear quality attribute
category is still necessary. That is, when we can describe such as "When a database
server breaks down, the system has to recover in 5 minutes by using backup
equipment", does the general term "availability" have any value? Sure it is, because
the high-level classification is the basis for generalization countermeasures. Different
detailed quality attributes share the common tactics, if they belong to the same one.
Meanwhile, from general classification, we can figure out the main concerns, and try
to solve the conflicts that have high priority. ATAM employs the Quality
Attribute Utility Tree, by which the primary demands of the system are shown.
Finally, not all the evaluation methods spread their power to each kind of quality

attribute. Some of them focus on one or two attributes, but lose their effects on
others.

Aside with scenario-based evaluation methods, several formalization-based ones

have appeared for a long time and been referenced as the classic analysis strategies.
Typical researches of these formal architecture models include Process Algebra
(Allen, 1997a), CHAM (CHemical Abstraction Machine) (Inverardi, 2000), FSM

(Zhang, 2001), LTS (Labeled Transition Systems) (Uchitel, 2003) and queuing theory

228 Software Architecture

(Marco, 2004). The most benefits of this kind are preciseness and capability of
automation. Through implementing a fixed algorithm, we can perform deadlock or
performance checking, However, over consideration on completeness of
formalization, these methods often require a great amount of source data, which
incurs excessive overhead to a large-scale project in reality. Now, most of them still
stay in the research lab while the rest are adopted in a very limited scope.

7 . 2 SAAM

SAAM (Scenario-based Architecture Analysis Method, or called Software
Architecture Analysis Method) is the first well-documented and carefully-designed
analysis method for architecture analysis. It was created during 1993 and published
in 1994 (Kazman, 1994). Later, it was improved in (Kazman, 1996b) and got more
detailed description along with study cases in (Bass, 1998). Before that, there is a
common case that sellers of a certain software product pronounce that their
software contains remarkable properties that are superior to their competitors ' . But
they cannot evaluate it and thus prove it concretely.

SAAM is an intuitive method trying to measurethe software 's quality through
scenarios, rather than the general and inaccurate quality attributes description.
SAAM is simple, caring about only the relationship between scenarios and
architecture structures, by taking not too many steps and specific techniques.
Therefore, it is the ideal start point that beginners of architecture evaluation take.
Initially, SAAM is designed to deal with modifiability of architecture. But after
evolution and practice for several years, SAAM has shown its power in many other
common quality attributes, and becomes the basis of some other evaluation methods,
such as ATAM. It can detect the possible risks of evaluated architecture and take
comparison among several architecture candidates with respect to meet predefined
scenarios.

In addition, SAAM prepares a platform for many stakeholders discussing
together, maybe for the first time since a project is set up. They have the chance to
communicate with each other with what they care about, with human languages, and
thus start to get the idea of what others care about as well as how these cares are
processed in sys tem's blueprint. During this process, one may fred understanding
deviations and incorrect design led by them.

7 . 2 . 1 General Steps of SAAM

Simply speaking, the general steps of SAAM seem rather naive and intuitive. I find
that many people, who have never touched architecture evaluation, when seeing the
overview of SAAM for the first time, comment that " T h a t ' s the one hidden in my
mind", "Evaluation is as what it should be like that", or something the like. After
all, most of them have learned how to test a system with use cases or the similar
methods, and own adequate experience in evaluating existent designs. However, in

7 Evaluating Software Architecture 229

the early 1990s, when the term "software architecture" had not been widely
accepted and evaluation was in its initial stage, SAAM was undoubtedly a
remarkable creation. In addition, the techniques used in it are carefully designed and
tested through a batch of projects.

1 .Develop Scenarios] ~ ~1

3.Classify/Prioritize Scenarios

4.Individually Evaluate
Indirect Scenarios

5.Assess Scenario Interaction

2.Describe Architecture(s)]

] / / ~ 6.CreateOverall Evaluation

Compared to the relative fixed and inflexible algorithms, which are executed by
machines, or pure formalized models, which are Used by the people like machines,
SAAM puts attention to improve stakeholders' communications and encourage
active suggestions by making use of human's nature. T h a t ' s the case with most
evaluation methods look like. The steps tell the general phases of evaluation, what
should be achieved in each phase, and the relations among these phases. The
primary steps are shown in Fig.7.2(Clements 2003b, Fig,7.1).

Clearly, we can get the idea that what the input and output of SAAM are. To
start the evaluation, a description of architecture should be provided. This
description can be existed in any style, as long as it can be accepted and understood
by evaluation participants. The degree of detail and concentrating of description
depend on the targets and concerns of a specific evaluation, which, sometimes, calls
for the renewal or supplement of architecture information. Multiple distinct
architectures' descriptions can also be fed into the evaluation, in which case they
can be compared and selected.

Aside from architecture description, another critical input is scenarios. The
essential point of scenario-based evaluation is to check whether the current
architectures can meet the expected quality requirements directly and if cannot,
what modification should be taken. As mentioned before, it is almost impossible to
describe quality attributes in accurate and measurable manners. To make them
meaningful to evaluation, they have to be described in more concrete format. That is
why scenarios are so necessary. Those scenarios can be some concerns extracted
from the initial functionality requirements, but more of them come from the
discussion or brainstormof stakeholders, which may be crucial to stakeholders and
brand new to architects or designers. After all, the architecture involving the
evaluation has to firstly support all the functions documented in requirement

Fig. 7.2 Activities and dependencies in a SAAM analysis

230 Software Architecture

specifications. In evaluation, the key is whether the architecture can meet the
requirement functions with desired qualities, which are reflected by the interaction
between various stakeholders and the software system.

The main output normally is given in the style of evaluation report, by which
SAAM shows the defects that current design cannot reach the quality requirement,
in the single architecture evaluation case; or indicates which candidate meets the
scenarios best, in the multiple case. It also has the capability of figuring out the
potential unsuitable design due to ugly decomposition or excessive complication. At
last, SAAM provides the estimation of cost and range incurred by modification,
avoiding the blind construction.

Besides that, SAAM will draw some great side effects. SAAM improves the
stakeholders' understanding of current architecture, forces the better architecture
documentation and clarifies system' s most possible future evolution. Via
stakeholder-wide presentation and discussion, the priority of business goals and
potential scenarios can also be clarified.

In the following sections, the activities and techniques in every phase are
accessed in detail. From them, you can see that how a complete evaluation is
performed and how the benefits are generated.

7 . 2 . 2 Scenario Development

Scenario development is a process of discussion and brainstorming, participated by
a variety of stakeholders. Each of them has his or her own perspectives and
concerns, and provides scenarios based on them. For a modification, sponsors care
about the introduced cost by it; programmers care about which modules are involved
in it; customers care about the price after it; and end-users care about the benefits
provided due to it. Relevant, or even inconsistent, scenarios may occur and be
documented. But the most important point is to keep a criticism-free environment.
Any generated scenarios should be recorded carefully and then listed to make
convenience every stakeholders' later inspection. Sometimes, a pre-introduction or
guide tutorial may be hold for those people who have little experience in evaluation
in order to guarantee the "good" scenarios' generation, which means the ones
reflecting the sys tem's .main use cases, potential modifications or updates, or other
qualities the sys tem's behaviors have to confirm to.

There may be several iterations during this phase. In collection of scenarios,
participants may encounter the situation that some needed architecture information
cannot be found in provided documents. And the complemented architecture
description may, in turn, trigger more scenarios. Scenario development and
architecture description are interrelated and drive each other.

7 . 2 . 3 Architecture Description

Architecture documents, most of which are prepared before evaluation, contain the
information to be evaluated. For better evaluation, architecture description should be
provided in a manner that every participant can accept, tells things such as

7 Evaluating Software Architecture 231

components, connectors, modules, configurations, dependency, deployment and so
on. Any form of description is allowed, such as human language, diagrams, data
tables or formalized models, as long as it can highlight the architecture clearly and
unambiguously. Sometimes, architecture description has to be complemented or
renewed according to generated scenarios' requirement, which then introduces more
scenarios. Passing scenario development and architecture description commonly
takes two or more iterations.

7 . 2 . 4 Scenario Class i f icat ion and Prioritization

In SAAM, scenarios are classified into two categories, the direct and indirect ones.
Direct scenarios are those which can be supported by the current architecture
without any modification. If the scenarios are similar to the original requirements
that have been taken into account, they can be easily met. Architect can demonstrate
this point by introducing a series of response behaviors under those scenarios.
Normally, direct scenarios, although cannot help show architecture's defects,
improve stakeholders' understanding to the architecture, and benefit evaluation
under other scenarios.

Indirect scenarios" cannot be directly supported by the current architecture.
Achieving them result in some modifications, such as adding one or multiple
components, removing an indirect layer, updating a module with a more suitable one,
changing or enhancing interface, redesigning relations among elements, or everything
in the between. Indirect scenarios are the most critical drivers for the subsequent
activities. You can get the s y s t e m ' s evolution in the future of great possibility,
though maybe obscure sometimes, by taking various indirect scenarios into concerns
comprehensively.

With architect 's help, it is easy to categorize generated scenarios. Even so, the
remainder may be too many to be carefully evaluated one by one. Therefore,
scenarios need prioritization process to select the most critical ones, considering
limited time and resource. CMU SEI recommends stakeholder-wide voting to decide
which ones can be considered as "critical". Each person can get a fixed number of
votes, through which they choose which scenarios in the list should be evaluated
carefully. The number of votes allocated to each one is approximately 30% of the
total number of generated scenarios. The voting strategy is that each one can vote 0
vote, all votes he or she owns, or every number in the between, to a single scenario,
as long as that the number of total votes voted is not more than the ones owned. All
scenarios, then, are sorted by the votes they received. How many scenarios are
chosen is dependent on the situation. Sometimes, you can find a clear line in the
ordered list. The scenarios above it receive most votes, while the ones below it get
very few (shown in Fig, 7.3). In this case, you can keep the scenarios above the
cutting line. In other cases, you can calculate the suitable number that can be
accepted and f'mished within expected time allocated for evaluation. Assuming that,
typically, one full day can finish 8 scenarios and you plan two days to perform
individual scenario evaluation, then top 15-- 16 scenarios should be remained. Even

232 Software Architecture

though some scenarios should be dropped according to predefined filter rules, their
providers can insist to add them to the remainder list, if most of other stakeholders
agree with that, either.

Scenario No. Votes

A'--,
E

C Jttn[Lil e

O

F12

F6

F13

F9

15

13

Fig. 7 . 3 Choose critical scenarios

7 . 2 . 5 Individual Evaluation of Indirect Scenarios

The most important information cared by all stakeholders is how current
architecture candidate is affected by indirect scenarios. What modification should be
done? Is that feasible to accomplish within the p ro jec t ' s expected cost, time and
scope? If it is, how much work will be appended to do those things? Or, if not, is
there some alternative solution? All these questions are accessed in this phase. For
each architecture candidate, its appearance under each individual remained indirect
scenario is estimated and evaluated. Here, the architecture' s elements are mapped to
the concrete quality attributes.

Indirect scenarios require modification for current architecture. In most cases, the
architects are responsible of explaining the necessary changes. If they cannot
precisely clarify the possible acts, the completeness of architecture description is
suspicious. The detailed explanation should contain the range within which the
modification is performed, the number of elements in this range and the estimated
work amount. All of this information is summarized, commonly, in a style of table.
Table 7.2 is an example.

This table gives the motivation of subsequent actions of modifications.
Stakeholders, according to it, decide which ones are the most urgent and should be
performed as quickly as possible, which ones should be delayed for a moment, and
which ones should be ignored in the current project for their infeasibility of
accomplishment. If a scenario needs too much modification, it is reasonable to
believe that there are design defects, and thus an entire redesign at that location may
be taken.

7 Evaluating Software Architecture 233

Table 7.2 Table of Individual Scenario Evaluation in SAAM

Scenario
No.

F4

F8

F9

Scenario Description

Allowing data exchange
with other system

Adding context-sensitive
help

Enabling multip le
DBMS

Needed M odificat ion

Data serialization module,
Data exchange interface

Context sensitive UI control,
Help documents

Data Managing Abstract

Number of
Elements to
be Modified

Estimated
Work

12 work day s

30 work days

3 work days

7 . 2 . 6 Assessment of Scenario Interaction

When different scenarios ask for modifications of the same architecture element,

they are expressed as "interaction" to that element. Scenario interaction means the
potential risks of original design. What have to be emphasized is that the

"difference" of scenarios is the semantic distinctness, which can be decided by

stakeholders. Before classification and prioritization, those scenarios which have
something in common can be grouped or merged to avoid evaluation redundancy.
The ones left reflect typical use, modification or other quality requirements with
little overlapping, The case that scenarios different in semantics affect the same

architecture element, such as a component, indicates something bad. High scenario

interaction means the poor design of functions decomposition, except the case that
some classic architecture pattern means t o behave like that. Thus, scenario

interaction may be the source of disaster, because it can lead a mess of change during

the future evolution. Although not all the scenarios can be considered as malefactors,
they should draw our great attention.

During identification of scenario interaction, however, be care of the fake cases.
Sometimes, the architecture documents show that a single component taking part in
the interaction. But in fact, its sub-components deal with "interactive" scenarios

separately with perfect decomposition. At this time, you should return to Step 2
architecture description and check whether the granularity of documents reaches
y our need.

7 . 2 . 7 Crea t ion of Overal l Evaluat ion

This is the f'mal step of SAAM, generating the final report. If only one single piece
of architecture revolves in the evaluation, in this step all the evaluation results got in

previous steps are inspected and summarized as evaluation report, based on which
the following plan of modification will be determined.

If multiple architecture candidates take part in SAAM evaluation, a comparison

can be performed. To do this, it is necessary to decide a weight of each critical

scenario by considering its relations to business goals. In comparison, one

234 Software Architecture

architecture design may be good at a subset of scenarios, while another design is
superior under others. By purely counting scenarios ~ number of a design appearing

well, it is hard to decide which one is bet ter in some time. As a matter of fact,

scenarios, even though they are all the critical ones, have difference in their

importance, which can be expressed with weight. Several strategies of deciding

weight have been adopted for a long time. For example, stakeholders can hold a

discussion or debate to agree on scenarios ' relative importance. Or, if historical

records are available, they will become remarkable reference materials.

Direct scenarios can also influence the overall evaluation result. Different

candidates always have different number o f direct scenarios. Support ing more direct

scenarios indicates a better candidate, because those scenarios can be met without
modification. Sometimes, importance of direct scenarios is mixed into this

evaluation.
Finally, architect scores the appearance of each candidate under each critical

scenario. Normally, a relative value strategy is used, such as "1, 0, -1" (or "2, 1, 0",
" + , 0, - ", whatever). 1 means architecture behaves well under a scenario; -1 means

it is unsatisfactory; and 0 means indifferent. You can choose a range of 5 or 10, if

you need. With scenario weight and appearance value, an overall table can be made,

as in Table 7.3. Then by combining it with individual scenario evaluation, scenario
interaction evaluation and direct scenario suppor t analysis, the best architecture

design is selected as the basic of further development.

Table 7.3 Example of Overall Evaluation in SAAM

Scenario No.

F4

F5

Weight Candidate 1 Candidate 2

F8 5 1 0

F10 7 -1 1

F13 10 0 1

F14 6 0 1
, * * . ~ 1 7 6 o o ~ o ~

Overall Evaluation 45 67

7 . 3 A T A M

In this section, we introduce another evaluation method, Architecture Trade-off
Analysis Method(ATAM), which can be considered as the advancement of SAAM.
From its name, it is clear that A T A M , besides exposing potential defects and risks

hidden in evaluated architecture, leads to a bet ter understanding and t rade-off to
multiple relative, or even inconsistent, quality requirements or targets. When most
experts were working in trying to enhance SAAM with various concerns, just as

7 Evaluating Software Architecture 235

SAAMCS or ESAAMI did, inventors of SAAM turned their attention to the
complicated relation among targets reflected by scenarios as well as their remarkable
effect to the system construction.

ATAM is built on three areas: architectural styles, quality attribute analysis
communities and SAAM. In this section, we will briefly give the general idea of the
first two ones (SAAM has been discussed in the previous section in detail). Firstly,
we retrospect the general steps with respect to history, then describe what should
be done in several major steps and the adopted techniques in them.

ATAM, since its birth, came through continuous evolution and improvement, by
combining wisdom of numerous architects, designers, software engineers and so on.
You can find initial materials in (Kazman, 1998), (Bass, 1998) and (Kazman, 1999).
And ATAM ~s further detailed introduction and study case can be found in (Bass,
2003) and (Clements, 2003b). In the ATAM page of CMU SEI, everyone can get the
latest status of this method, including tutorials and support materials.

7 . 3 . 1 Initial ATAM

Most design is to deal with trade-off targets. Or, if there is no need to take trade-
off, it is actually not necessary to perform "design". Instead, only fixed calculation
according to requirements is required. This is well accepted. Lots of trade-offs are
resulted from non-technical reasons. For example, to guarantee the scalability, more
indirect intermediated layer will be added, leading to more coding and testing work,
which, then, means more cost and possibly more time needed for the whole project.
Or two stakeholders hold conflictive requirements blocking development process
interceding. This job, more or less, involves social aspects.

The duty of architects is performing designs, by accumulating requirements and
mapping them into structures and behavior specifications. Besides that, however,
the more important responsibility is to take trade-off, both in technical and social
perspectives. ATAM is just a handy tool to assist it. It has the principal
differences, compared to other evaluation methods or technologies, that it explicitly
considers the connections between multiple attributes, and permits principled
reasoning about the trade-offs that inevitably result from such connections. To
achieve this point, ATAM is divided into six steps allocated in four phases initially
(Kazman, 1998), as Fig.7.4 shown.

This spiral model comes from (Boehm, 1986) where a similar spiral model of
software development was described. It integrates evaluation into the whole design
process. The six steps, "Collect Scenarios", "Collect Requirements, Constraints and
Environment", "Describe Architectural Views", "Attribute Specific Analyses",
"Identify Sensitivities" and "Identify trade-offs", construct an iteration. After
finishing these steps, and if the evaluation' s results indicate whether the current
architecture is adequately closed to the expected quality requirements, more detailed
design, or implementation, will follow. Otherwise, a plan of modification will be
made to upgrade existent design, the product of which, then, will be put into another
ATAM iteration again. Noticeably, these steps are not necessarily carried out one

236 Software Architecture

Phase IV

Trade-offs ~ / ~ ~ Identify

i

\ AttribM(e
, \ Specific
~ Apn~tlyses

P%
& Analyses

Phase I
Scenarios &

~ ~ . . Requirements
�9 "~~ '~a ther ing

Collect / " ~ ~ cena;/
Collect
Requirements,

/ Consrtaints and
Environment

" '", Describe]j
"', Architectural]]

", , Views / /

. / /
se21ni2re o s ", /,// y

~ ~ J Phase 11
~ ~ Architectural Views

& Scenario Realization

Realize Scenario is not mentioned in the following description because the original
paper (Kazman, 1998) did this.

Fig. 7.4 Steps of ATAM (1)

by one in a linear manner. Each of them can trigger the improvement of products of
any other steps, as the figure shown that any part of the circle can touch each other
in the center. For example, failures to identify trade-offs may lead to architectural
views' renew. Or attribute specific analyses may collect more scenarios to keep
various attributes' balance.

During one iteration, Phase I concentrates on the input of scenarios. The first
step focuses on the "usage scenarios" only, and tries to improve participants'
understanding of architecture. The basis of communication is constructed. The
second step collects quality-related information, which is also expressed as
scenarios. These scenarios, which can be considered as the quality requirements
assumption, are the foundation of all following steps. After getting requirements,
designing starts, with the constraints of requirements acquired in the first phase.
Their architectures are documented and used to perform evaluation.

Then, the evaluation begins. Each quality attribute is analyzed in isolation
firstly. At this point, scenario interactions are ignored. Separation in evaluation
allows experts of individual quality attribute to take analyses with most attribute-
specific technologies or models. For instance, Markov model is good at analysis of
availability, while SPE (Smith, 2001) is handy in performance evaluation. The result

7 Evaluating Software Architecture 237

of attribute-specific analysis is measured in modeled value, such as "a request can
get its response in 500ms in the worst case" or "This system has availability of 99.
99% under assumed context".

The final job is to identify sensitivities and trade-offs. Before explaining them,
the concept of "architectural element" has to be defined first. Architectural element
means any component, property of component or property of relationships
between the components that affects quality attributes. A sensitivity point is the
modeled value that will change significantly under modification of architectural
elements. For example, in the C/S-based system, the redundancy of server affects
availability of the whole system. Adding a backup server may reduce average
broken-down time per year by one order of magnitude. That is a sensitivity point.
A trade-off point is the architectural element that is relevant to multiple
sensitivities. That is, if one component, or property of component, or property of
relationship is changed, several quality attributes will be varied greatly, better or
worse. For instance, the server redundancy in C/S system is a trade-off point
because its modification will lead to change of availability, cost, security and so on,
some of which are conflictive. The trade-off points expose the issues that should be
paid much attention by architects.

7 . 3 . 2 ATAM Improvement

Then in 1999, ATAM, after being applied in several practical projects, got upgrade
and enhancement (Kazman, 1999). Steps of ATAM are changed by merging several
original steps and complementing additional ones. (Shown in Fig,7.5) For example,
"scenarios grouping and prioritization" is added, just as SAAM. Some steps are
extracted and put as a step, such as "Architecture Presentation".

Step 0: Step 1" I I Step 2
Planning/Information ~ Scenario Brainstorming ~ A r c h i t e c t u r e Presentation
Exchange

A
o

o-

o

ATAM Evaluat ion

Step 8" I I Step 7" I I Step 6"
Consolidate findings and ~ -] Identify Trade-off Points ~ Perform quality attribute
develop action plan specific analysis

Fig. 7.5 Steps of ATAM (2)

Step 3:
Scenario Coverage
Checking

Step 4:
Scenario Grouping and
Prioritizati on

Step5:
Map High Priority
Scenarios on Architecturq

Two notable points about improved ATAM should draw our attention. The first
one is the concern that how to know it is the suitable time to stop generating
scenarios. From the figure above, we can see that Step 3 takes the scenario converge
checking. For this point, CMU SEI has developed a set of quality attribute-specific
questions, by which one can find that some useful scenarios are still missing and try
to supplement them. You can get the question sets in CMU SEI 's website.

238 Software Architecture

Another point is the adoption of ABASs (Attribute-based Architectural Styles).
ABAS is a kind of analysis-assistant tool to help stakeholders identify the quality
attributes brought by architecture styles, such as performance, availability, security,
testability, modifiability, and so on. Simply speaking, ABAS is architectural styles
attached with attribute values to reflect quality information. A famous example of
ABAS is the one for performance analysis for several concurrent processes. If a
system uses a collection of processes, all of which compete for limit computation
resource, therefore, it can be recognized as a performance ABAS. The questions
associated with this ABAS should probe the parameters, such as processes '
priority, synchronization location, queuing strategy and estimated execution time.
But, it is not enough to own performance relevant information only. They will be
fed into an analytic framework and facilitate analysis. For example, rate monotonic
analysis is an effective performance analytic framework for real time system (Klein,
1993).

Comparing two versions of ATAM, a trend is exposed that more practical
techniques and concerns are added into ATAM. The first version is built on spiral
development model, releasing the flavor of theory. But in the second version, steps
are rearranged to meet the needs of practical use. Besides that, some necessary
assistant techniques are introduced, although some of them are not considered as the
kemel ones in the perspective of evaluation. Shortly speaking, these changes try to
provide answers to such questions as: How to help stakeholders to understand what
to do and how to do in order to contribute evaluation? How to guide participants to
get the precise and clear insight of architectures to be evaluated? How to generate
scenarios that are positive to evaluation, avoid omitting something necessary, and
select the most important ones from them? How to map scenario to architecture,
thus identify sensitivities and trade-offs? And finally, how to perform concrete
evaluation for specific quality attributes and generate evaluation report, which
schedules the following activities? Just as what will be discussed later, these
questions are the common problems for most evaluation methods. Through applied
in numerous projects and improved by thousands of architects, designers and
software engineers, ATAM adapts itself to pursuit the better and better evaluation
results. In the next section, we will show what ATAM looks like currently and
what new techniques are adopt ed.

7 . 3 . 3 General Process of ATAM

The complete process of ATAM currently contains four phases and nine main
steps. Here, steps still do not mean that each of them has to be executed in a linear
manner. In practice, evaluation leaders should make decisions to carry out which
steps before to complement something, or jump to a step that should have been
performed in several steps later. It depends on the situation. Steps indicate only the
order of generation of intermediate evaluation products. Steps defined in the later
always need products got in the former as inputs. Therefore, if evaluation team has
own information that should be generated in a certain step or those information is

7 Evaluating Software Architecture 239

useless for evaluation, that step can be omitted.
The general process of ATAM is shown in Fig.7.6. The work of Phase I and II

are the kernel phases performing evaluation.

Fig. 7.6 General process of ATAM

Phase 0 is a preparation process. Considering the scope, time and cost of
ATAM evaluation, it is necessary to discuss or even sign up a strict contract about
the issues such as evaluation schedule, cost plan, organization of participants, etc.
People who expect evaluation should first figure out whether it is feasible to
perform evaluation, who should get involved in, what the target of evaluation is,
who should acquire the evaluation result, and what should be done after evaluation.
In order to avoid interruption during kernel evaluation, every question above has to
be carefully thought over and planned. After that, an evaluation team, if the
organization expecting evaluation has no such a permanent team, should be created,
which is responsible for the support work following up. Several roles are required in
the team, including team leader, evaluation leader, scribe, timekeeper, questioner,
observer and so on. For each role, it can be taken by the same guy. Normally, a
meeting of evaluation team should be hold in Phase 0 to clarify responsibility and

prepare for Phase I.
Phase III, in the contrary, is to end evaluation. There are two tasks that have to

be done. The first one is producing the final report, documenting the process and
information appeared in the kernel evaluation, and the conclusions based on them.
Another one is taking a sunmmry that facilitates evaluation improving, On the one
side, you can question the evaluation team members or other participants which
activities they feel good, which they feel ugly and why. Also, you can collect data
during evaluation, such as consumed cost and earned benefits. Through data mining,
maybe you can find some improvable points among various activities. On the other
side, you can accumulate scenarios and their associated questions for the evaluation
of the next similar project. In domain-specified development, this activity is

effective for its powerful reusability.
In the kernel evaluation phases, nine steps, similar With the ones in the previous

sections, are involved. They are, then, separated into four sub-phases, as the follow

lists:

240 Software Architecture

�9 Presentation
Step 1. Present the ATAM: Present steps, activities, methods and

techniques in ATAM.

Step 2. Present the business drivers: Present business goals to identify

main quality requirements.
Step 3. Present the archi tecture: Explain how current architecture meets

the business drivers.
�9 Investigation and Analysis
Step 4. Identify the archi tectural approaches : Find which approaches are

used to build architecture.
Step 5. Generate the quality a t t r ibute uti l i ty tree: Get the prioritized

scenarios reflecting sys tem ' s utility in a tree style.
Step 6. Analyze the archi tectural approaches : Analyze the architecture

approaches that supports the critical scenarios shown in the utility tree, and
identify risks, nonrisks, sensitivities and trade-offs.

�9 Testing
Step 7. Bra ins torm and priori t ize scenarios: Generate more scenarios with

more kinds of stakeholders.
Step 8. Analyze the archi tectural approaches : Act the same as step 6, but

use the critical scenarios selected from Step 7.
�9 Repor t ing

Step 9. Present the results: Produce evaluation report.

In fact, the major Phase I and Phase II are two iterations through these steps,
different in involved steps and scope of participants. Phase II requires more kinds

of stakeholders to take part in scenario generation and analysis discussion. Phase I,
however, tries to identify the primary quality attributes and lay the foundation for

following evaluation by a few principles. Phase I only passes Step 1 to Step 6. Of
course, it is not necessary to follow these two iterations by rore. Evaluation team
should schedule how to iterate through these steps and who should take part in each
iteration in reality.

Table 7.4 Two Iterations in Kernel Evaluation

Sub-Phase Evaluation Step Major Phase I Major Phase II

1. Present the ATAM

Presentation 2. Present the business drivers

3. Present the architecture

4. Identify the architectural approaches

Investigation 5. Generate the quality attn~oute utility tree
& Analysis

6. Analyze the architectural approaches

Reporting
, ,

7. Brainstorm and prioritize scenarios
Testing

8. Analyze the architectural approaches

9. Present the results

N/A

7 Evaluating Software Architecture 241

You may find some unfamiliar concepts, such as "utility tree", "r isk" or
"nonrisk", or argue that Step 6 seems the same with Step 8. We will explain in more
details in the later sections.

7 . 3 . 4 Presentation

This sub-phase targets to define which actions are beneficial and which not. It
guides the participants to make effort in contributing design of system. Along with
that, this sub-phase also provides the input products for the following steps.

Step 1. Present the ATAM

The first step answers the questions "what is ATAM?" and "what should we do
during ATAM?" This is because, except evaluation team who is professional, other
stakeholders may be the first time to participate evaluation. The evaluation leader is
required to present A T A M ' s process to participants, and answer any relevant
questions from them, during which the leader should focus on the steps, concepts,
techniques used in such as scenario prioritization or construction of utility tree,
input and output of evaluation and other relevant information.

Step 2. Present the Business Drivers

Then, the leader of project (project lead manager or someone the like) should exp lain
the primary business drivers to every participant. After all, this information is
necessary to scenario development and specific assessment. This presentation
should contain the topics such as the main business targets, main functions
documented in the requirement specifications, relevant constraints of technique,
management, economics and politics, and important quality requirements by
stakeholders. Be care of the "stakeholders" in this area. In different major phases,
different range of stakeholders may be got involved, leading to the deviation of
concerns possibly. This distinctness can be considered as a contraposition to expose
the points that have not been taken into account.

Step 3. Present the Architecture

Lead architect present existent architecture, normally in the style of multiple
architectural views. Most projects need decomposition view indicating static logic
structures, component & connector view indicating runtime structures, allocation
view indicating mapping between logic structures and physical entities and behavior
view describing behavior expectation. But, under specific situation, architect has the
privilege of deciding to use other views to focus one certain local area of the system.
The additional views may explicitly provide architecture information against critical
quality attributes. Degree of detail in architecture presentation affects the following
analysis directly. Architecture is responsible of choosing a suitable level of detail,
considering the needs of evaluation, whose expected effects have been set in the
major phase of preparation. Of course, during evaluation, if necessary architecture
information has never been accessedyet, stakeholders can query it to architects. An
important task is to list the explicitly-used architectural approaches, which
facilitates the next step.

242 Software Architecture

7 . 3 . 5 Investigation and Analysis

Via this sub-phase, stakeholders start to map architecture to quality attributes. But
unlike the versions of ATAM mentioned above, different and outstanding strategies
are used. Instead of architectural elements, architectural approaches are captured and
analyzed, and instead of brainstorming-like scenario generation, utility tree is

adopted, where the prioritization of each scenario is measured with two-dimension
estimation. During assessment, risks, non-risks, sensitivities and trade-offs are

identified. The accomplishment of identification is not the end, but the start point

of analyses.

Step 4. Identify the Architectural Approaches

The reason of identifying architectural approaches is that these informations
provide the rationale behind the construction of architecture. Simply speaking, an
architectural approach means a design decision according to function or quality

requirements.
It is a commonly held belief that architectural styles and patterns are good

information carriers with respect to the reasons to make a specific design.
Architectural patterns describe the abstract elements needed, their layout and
relevant constraints. For each of them, quality benefits and defects can be concluded

based on its thousands of times of usage, and therefore so does the rationale.
ABAS 1 , which has been mentioned in the second version of ATAM, is particularly
useful. The attribute values associated with them expose the primary quality
attribute targets, and also can be used to analyze whether those targets can be met.

But not all the architectural approaches can be expressed in the form of
architectural styles or pattems. In this case, architects should explain with natural
language why they make the design like what it looks like or why it behaves in the
manner specified. Architects should be capable of telling any architectural approach
they have used. Other participants can also capture approaches implicit for

architects but important for evaluation.
Although clear explanations are necessary, no analyses on approaches should be

taken. That is the task of Step 6.

Step 5. Generate the Quality Attribute Utility Tree

In this step, t h e critical quality attribute targets are identified by the evaluation
team and core project members, such as managers, customer representatives and lead
architect. The primary goal of this step is to avoid a meaningless waste of time and
cost spent on evaluation. If critical quality attribute targets cannot be determined
and agreed on among participants, evaluation cannot gain the benefits that it should
have. Quality Attribute Utility Tree is a powerful tool to reach this goal. You can

1 ABAS is the abbreviation of Attribute Based Architecture Style. But the "style" here has
different meaning from what we have defined in Chapter 2. It can be considered as "architectural
pattern" of this book.

7 Evaluating Software Architecture 243

find a similar utility tree in (Boehm, 1976).

Quality Attribute Utility Tree (QAUT for short in the following) is a tree
indicating the refinement of quality attributes. The root of QAUT is "u t i l i ty" ,
followed by sub-level of quality attributes, such as availability, modifiability or
security typically. The next level is the categories of specific description of quality
attributes, which decompose them into several topics. The fourth level, or the last
level, is the concrete scenarios, which precisely define the quality requirements and
allow the following analyses. Generally speaking, QAUT translates the s y s t e m ' s
expected utility to scenarios.

Each scenario is measured with a two-dimension metrics: (1) importance of this
scenario to the success of system; (2) difficulty of development work to support
this scenario estimated by architects. The used scale can be set as a range of 3 such
as High (H), Medium (M) and Low (L), a range of 5, 10 or the like. After marked,
scenarios are prioritized, the top of which are the critical quality attribute targets
that participants want to acquire. Fig. 7. 7 is a sample of QAUT. In fact, the
scenarios generated in the real project are more complicated than the ones in this
example.

Utility--

-- Availability

mPerformance

Software Failure

I Hardware Failure

E
--Modifiability---~

-- Security

Access
Performance

Network Latency

Database

(M,L) Reset the process when it keeps
in deadlock>30 seconds

(H,M) Restart when server failure>5
E min with backup

(H,L) Mail administrator immediately
when no backup server is available

(H,M) Allow 500 requests per second

E (L,L) Choose the server whose latency
< 1 second, if any

(L,L) The timeout threshold can be
customized

Reasoning Engine ~ (H,L) Allow user add new reasoning
library during runtime

(H,H) Upgrade to new reasoning engine
with a duration<3 work weeks

Privilege
.~ Management

Data
Confidentiality

~ ~ (M,L)Administrator owns advanced U 1

L (H,M) Privileges can be derived

(M,L) Data in network exchange should
be encrypted with RSA algorithm

Fig. 7.7 A sample of quality attribute utility tree

QAUT finally generates a list prioritized scenarios, which should be considered
in the later analyses in the order of (H, H), (H, M), (M, H) (L, L). This priority
exposes clearly the various stakeholders' comprehensive concerns. Someone may
believe that performance is the critical requirements, while some others insist that
availability should be paid more attention. But until QAUT is built, every

244 Software Architecture

individual's thinking may be messy and deviated. QAUT guides and clarifies the
quality requirements of system and their relative importance. Therefore, if time or
cost for evaluation is not enough, scenarios with low priority will be omitted,
because it is meaningless to analyze scenarios that are not important or rather easy
to implement.

Step 6. Analyze the Architectural Approaches

QAUT highlights the direction of evaluation. After that it is the time to analyze the
mechanism by which architectural approaches deal with the scenarios of high
priority. In this step, evaluation team, together with architects, identify risks, non-
risks, sensitivities and trade-offs located in the approaches relevant to important
scenarios.

Risks are the decisions that may be potential problematic under certain possible
cases that have been made, while non-risks are the contrast. Maybe someone argues
that risks need more attention, because they are the source of future problems.
However, non-risks are equally important since they indicate which architecture
approaches should be insisted. What 's more, when context changes, non-risks may
translate into risks. Hence, it is beneficial to list non-risk explicitly.

Sensitivity point is the modeled attribute value of system that can be affected
greatly by some architectural elements. And trade-off point is the location of
system which is related to several sensitivity points. Necessary information should
have been prepared in Step 4 and Step 5. But if evaluation team feels there is
something missing, they query it to architects.

To identify risks, non-risks, sensitivities and trade-offs, the whole participants
will finish the following job:

�9 Identify the architectural approaches that try to support the important
scenarios, and figure out how these approaches are instantiated in the current
architecture.

�9 Analyze each approach, considering its notable good features and well-known
problems. Judge whether they draw negative effects to the quality attributes.
This is normally done by asking accumulated questions associated to those
approaches.

�9 Based on those answers, identify the risks, non-risks, sensitivities and trade-
offs. Record them in the documents respectively.

At the end of this step, the first major phase is over. If everything is successful,
evaluation team will get the general idea behind the architecture, as well as good and
bad points in it.

7 . 3 . 6 Testing

This phase aims at testing the analyses that have been done so far. More kinds of
stakeholders will give proposals of s y s t e m ' s quality requirements. Range of
discussion is expanded. Therefore, additional problems and concerns may be touched
to facilitate requirement supplement.

7 Evaluating Software Architecture 245

Step 7. Brainstorm and prioritize scenarios

In Step 5, scenarios are expressed as QAUT, indicating what architecture looks like
from core project decision makers. But in this step, larger community of evaluation
is formed. The effective method to draw more scenarios in this case is
brainstorming, just like what is taken during SAAM scenario development. Creative
ideas and novel suggestions can be triggered under this environment. Characteristics
of scenarios are concluded as three categories:

�9 Use Case Scenarios: Describe that how the system, whose architecture is
being evaluated, behaves and responses under the end-users' certain
manip ulat ion.

�9 Growth Scenarios: Describe how the system, whose architecture is being
evaluated, support rapid modification and evolution, such as adding
components, porting to other platform or integrating with other systems.

�9 Exploratory Scenarios: Probe the extreme growth case of the system, whose
architecture is being evaluated. If growth scenarios uncover expected and
possible modification cases, exploratory scenarios provide evaluation
participants a chance to see what will happen when great changes are
required, such performance has to be increased by 5 times, or availability
should be enhanced by one order of magnitude. According to this kind of
scenarios, extra sensitivities and trade-offs may be exposed, based on which
an evaluation test can be performed.

After brainstorming generation, scenarios are also prioritized by voting, same as
ATAM. It is obvious that there are notable differences between scenarios generated
in Step 5 and Step 7. Scenarios generation with QAUT is process of refinement,
which appears as a top-down style. The evaluation team and core project dissension
makers work on this to find the primary quality drivers for current architecture.
However, scenarios generation by brainstorming need almost all stakeholders'
contribution. This step starts with concretescenario proposals. During test,
scenarios generated in this step are compared to the result of QAUT. New scenarios
may be the new leaves of existent branches of QAUT or missing completely before,
which lead to new quality attributes. This matches the target of evaluation test.

Step 8. Analyze the Architectural Approaches

This step uses the same methods and techniques as Step 6. The only distinctness is
that stakeholders analyze architectural approaches against the ones produced in Step
7. If everything is OK, architects only explain the realization of scenarios by
captured approaches. But if there are some scenarios that cannot be supported
directly, evaluation team should record this in documents, helping constructing the
plan of modification.

7 . 3 . 7 Present the Results

Step 9. Analyze the Architectural Approaches

This is the final step of ATAM in one iteration. All information, including those

246 Software Architecture

collected by original architecture documents, generated by stakeholders and acquired
through analyses, are presented in evaluation report. The most important ones, or
the output of ATAM, contain documented architectural approaches (associated by
guide questions), scenarios with priority, QAUT, critical quality requirements, risks,
non-risks, sensitivities and trade-offs. All stakeholders hold discussion to handle
current architecture's problems, specifically the risks and trade-offs.

7 . 4 Comparison among Evaluation Methods

Software engineering community has proposed a batch of methods to uncover the
potential quality attributes, risks and defects from architecture. Besides SAAM and
ATAM that we have depicted in detail, some other methods also draw attention
from the public and get validation during applications, including SBAR (Bengtsson,
1998), ALPSM (Bengtsson, 1999), PASA (Williams, 2002a), and so on. Therefore, a

sys temized comparison should be taken in order to figure out their features and
offer guide lines related to the judge which methods should be used under which
context where which concerns are taken primarily.

7 . 4 . 1 Comparison Framework

Before taking the comparison, a framework should be created to normalize features
of various evaluation methods without which we cannot give fair comments and
assessment to them. That is, we must first f'md their common characters and
activities, and then establish comparison metrics. As scenario-based evaluation
methods, they are structurally similar and share analogical activities, phases and
participants. These methods rarely use entirely-unprecedented structures, but are
rather "variations on a theme". Upon this comparison framework, you will feel
much easier in learning other methods not mentioned here, or the ones that have not
reached their birth.

The evaluation taken by stakeholders is essentially held with the form of
conference whose participants are all or part of stakeholders, decided by which
method is applied. Generally, scenario-based evaluation methods work through four
phases, as Fig.7.8 shown.

3 4

1

Evaluation
Preparation I

SA Evaluation
through Scenarios I

Scenario
Development

Result Interpretation
& Conclusion

Fig. 7.8 General phases of scenario-based evaluation

7 Evaluating Software Architecture 247

Phase 1. Evaluation Preparation: Stakeholders need a frame of reference
with which to communicate and thus lead to a great insight to the relationship
between the system to be built and the problems to be solved, as well as
understanding among each other, before any activity starts. Not every body
involved in the next successive processes is familiar with s y s t e m ' s general
knowledge, nor do they make it clear that what should do during evaluation, and
which ideas or proposals may be benefits to evaluation' s result. So, a preparation
phase is necessary, which should not be considered as secondary compared to other
three phases. Although you might think you need not explicitly give the evaluation
related information with which participants get warmed up, as activities go through
one by one you will regret that decision after it is too late, because too much chaos
and deviation are incurred and benefits shrink seriously. In this phase, three classes
of information should be pronounced publicly. Firstly, the evaluation leader should
explain exactly the evaluation method to be used and its activities, trying to set their
expectations and answer questions they may have. This is a guide that avoids or, at
least, reduces irrelevant or valueless discussion or other exceptions. Secondly, the
system goals (or business motivations) should be presented, normally by project
managers or representative customers. After all, participants need to know which
goals mainly direct sy s t em ' s development and which quality attributes require
special concentrations. Finally, architects should describe existent architecture and
explain critical design decisions that meet system targets, which forces eligible
architecture description or documents and at the same time improves design effort in
the disguised form. When this phase ends, everybody will get a clear comprehension
about s y s t e m ' s synoptic structures and goals driving them. If it is not the case,
there must be something wrong in the materials for preparation.

Phase 2. Scenario Development: The purpose of this phase is to generate
as many valuable scenarios as possible and enable the next phase. Providing a pile of
cases is relatively easy. The typical strategy is to encourage stakeholders sitting
around the table take a brain storm, thus suggest anything that they want to say.
But the open question is when to stop scenario generations and how to choose
those which are most benefit to correct and improve current architecture design.
Some methods keep generating until new scenarios always become overlapped with
previous ones or do not affect architecture. Other ones use heuristic strategy which
guides people to produce effective scenarios via, for example, providing preliminary
question suit. Those methods which pay attention to single quality attribute usually
define the metrics of relevance between scenarios and target attribute. Priority, as
mentioned in the former section, is also the issue to be carefully concerned.
Generally speaking, in a conference lasting 2 or 3 days, 0nly no more than 20
scenarios are picked and evaluated, considering lengthy and complicated scenario
evaluation phase, which means a prioritization mechanism is needed. CMU SEI
recommends the "30% voting" skill, which means any participant hold a number of
votes equal to 30% of the total number of generated scenarios. Votes of eacla
individual can be allocated in any way that the person feels fit: all votes for one

248 Software Architecture

scenario, one vote for each scenario, giving up voting when no scenario is to his
liking, or anything combined with them. Only scenarios that are "above the line"
will be brought into the next phase.

Phase 3. Software Architecture Evaluation through Scenarios: This is the

core phase of scenario-based evaluation, creating the bridge between stakeholder' s
expectations or suspicions to s y s t e m ' s skeleton and interaction manners. Here
several questions have to be clarified for each scenario outputted by the previous
phase, such as "does this scenario can be supported by current architecture
directly?", "if architecture has to be modified to meet the new concerns, how much
the cost associated with that scenario will be incurred by that modification?", and
"What the influence led by the scenario is and how is it measured?" Architects and
domain experts should illustrate the required change specified by scenarios according
to estimation based on their experience and insight, and provide suggestions against
objectives and risks related to the software architecture. Some cases deserve
people ' s urgent attention, such as that the scenarios different in semantics affect
the identical components or multiple scenarios stand against each Other essentially.
Architects are responsible of finding sensitive points and trade-off points, through
which they perform fine-tuning on architecture to fit for multiple conflict targets. If
multiple architecture candidates have been created in the design phase (this is the
normal case), overall evaluation should be taken, during which they are compared by
calculating the overall degree to which they support scenarios used in evaluation. In
conclusion, this phase' s input are scenarios filtered by the scenario development
phase and software architecture description. The output is a raw evaluation result
needing interpretation, such as a list with items indicating each individual scenario' s

influence to a specified architecture /"-Input

or the overall scores for involved l l Scenarios Software
architecture candidates, l Description ArchitectureDescription

Phase 4. Result Interpretation
and Conclusion: The tables or
something the like which contain the
information collected by the third
phase do not mean the end of the
whole evaluation. They are not so
clear that we cannot gain all the
possible benefits it should have
brought. Evaluation should provide a
series of clear final documents
capable of guiding further design
modification and implementation.
Three categories of information can
be extracted from the raw result.
Firstly, you can choose which
architecture candidate is the best one

Evaluation
via

Individual Scenario

/
1
!

Overall Evaluation ,
(optional) ',

I

utput

Raw Evaluation Result
to be Interpreted

Fig. 7.9 SA evaluation through scenarios

7 Evaluating Software Architecture 249

to become the fundamental model directing development, considering relative scores

gotten from overall evaluation. We can guarantee that no architecture evaluates

better than others in every area. An architecture may work better than others in

some areas, while show its weakness in other areas. Evaluation can clearly reflect

architecture 's features, good or bad ones, via which project leaders can decide to

adopt which one and abandon the others, or simply recreate one if all of them seem

ineligible. Secondly, you can plan the modification plan by combining and organizing

those clues documented during evaluation. Original architecture is created according

to concerns from requirement specifications. They might appear not so fit with the

respect to the issues introduced during evaluation, or stakeholders change their mind

and want to fix architecture. Evaluation provides a chance that everybody ' s wisdom

can affect the desigr~, which is good at correcting the preconception of designers who

build the blueprint based on, possible slant, understanding, Evaluation tells which

part of architecture falls in defects needing repair and where exist risks needing

attention and correction. Finally, you can accumulate practical skills and experience

of evaluation, which help you take adjustment when you take part in the next

evaluation for better effects. This, then, gradually develops the overall development

atmosphere and promotes software development quality.
With these common evaluation activities, we can conclude the features that

should be employed in the comparison framework. You can find other notable

comparison frameworks in (Dobrica, 2002) or (Barbar, 2004).

Table 7.5 Evaluation Methods Comparison Framework

Item

Context

Phases

Ap p licat ion

Element

Special Goal

Quality Attribute

SA Description

Involved Stakeholders

Evaluation Preparation

Scenario Development

Evaluation Techniques

Result Interpretation &

Conclusion

Validation

Support Tool

Description

What is the particular target of this method?

Which quality attributes does this method cover primarily?

What kind of software architecture description is required?

Which stakeholders should participate in this method?

What special concern should be taken by this method?

What activities are adopted in scenario generation?

What activities are used to acx.omplish the special goal of this
method?

Which conclusion can be concluded after the whole evaluation? Are
there any additional benefits?

Has this method been validated in the industrial cases? How about its
effects?

What is the support tool, if any?

In the next section, we will provide a brief overview and comparison among

250 Software Architecture

evaluation methods with the framework above, trying to guide the selection of these
methods when evaluation is needed for your projects. Two phases, Evaluation
Preparation and Result Interpretation & Conclusion are so trivial that they are not
contained in the following overview, only get illustrated if they are rather noticeable
in certain methods.

7 . 4 . 2 Overview and Comparison of Evaluation Methods

In this section, several common architecture evaluation methods will be accessed
respectively by introducing and comparing their features, including SAAM,
SAAMCS, ESAAMI, SAAMER, ATAM, SAEM, SBAR, ALPSM and PASA. Since
in the preceding sections, SAAM, ATAM and SAEM have been described in detail,
only outstanding features of them will be generally listed bellow.

7 . 4 . 2 . 1 SAAM. Scenario-based Architecture Analysis Method

SAAM (Kazman, 1994; Kazman 1996b) is a method designed mainly to gear the
extent to which architecture design meets the desired quality attributes in a very
intuitive manner.

�9 Special Goal: SAAM tries to map desired quality attributes, which are
represented by scenarios to the architecture description. In addition, SAAM
provides a chance to take analysis of architecture' s inherent dangerous spots
and thus potential risks.

�9 Quality Attr ibute: SAAM was initially developed with respect to
assessment of modifiability. But it can also be employed in evaluating other
quality attributes, although ATAM is commonly used in these cases instead.

�9 SA Description: An architecture description that can be easily understood
by various participant stakeholders should be used in SAAM, which at least
shows the sys tem's static composition of primary computation and data
components and their relationships. Besides them, sys tem's dynamic
behaviors over time should be included in SAAM's needed description.

�9 Involved Stakeholders: All stakeholders should be present in this evaluation
to guarantee the comprehensive concerns and harmonization.

�9 Scenario Development: Scenarios are generated during a discussion without
debates. This phase may include several iterations, together with architecture
presentation, to collect more scenarios that affect s y s t e m ' s architecture.
Scenario Development will end until no new scenario disturbs the design.

�9 Evaluation Techniques: SAAM divides generated scenarios into two
categories: direct and indirect one, the latter of which is paid much attention
since it will introduce modification of the original architecture. After
prioritization and filtration, the resulted scenarios are evaluated in an
individual manner by figuring out the architecture elements disturbed by them
and the extent and cost of modification. Scenario interaction technique is
employed to locate the implicit bad design of system decomposition or
implicit risk spots. Finally, overall evaluation brings benefits of comparison
and selection among multiple architecture candidates.

7 Evaluating Software Architecture 251

�9 Val idation: SAAM is a mature method, experiencing many application
cases.

�9 Support Tool: SAAM is supported by SAAMtool (Kazman, 1996a).

7 . 4 . 2 . 2 SAAMCS: SAAM for Complex Scenarios

The name of this method obviously exposes what it cares about most, that is, the
complex scenarios. This method appeared in (Lassing, 1999). By inheriting most
activities and techniques from SAAM, SAAMCS extends it with the method of
finding which scenarios are complex and analyzing how architecture is stricken by
them.

�9 Special Goal: The sole target of SAAMCS is to perform risk assessment of
system modification.

�9 Quality Attribute: SAAMCS is an extension for handling specific problems,
therefore its capability, unlike SAAM, is limited in modifiability, or
"flexibility" in the words used by its author.

�9 SA Descript ion: SAAMCS uses the final version of software architecture
description to investigate the detailed information related with complex
scenarios. Considering the relationship between a system and its external
environment, s y s t e m ' s architecture description falls into two categories:
microarchitecture and macroarchitecture.

�9 Involved Stakeholders : Aside from that all stakeholders' involvement is
recommended as SAAM, SAAMCS identifies the crucial role of scenario
initiators, who are the people or organizational units that have great interest
in the implementation of a certain scenario.

�9 Scenario Development: The feature of SAAMCS in this phase is the
identification of "complex scenarios". To find them, SAAMCS def'mes a
measurement instrument of complexity, including scenario initiator,
architecture description and version conflicts. The eligible scenarios are
categorized and listed, preparing for the next evaluation phase. A two-
dimensional framework diagram is adopted to help locate complex scenarios.
One dimension is sources of change, including "Functional Requirements",
" Quality Requirements ", " External Components " and " Technical
Environment ", while another one is scenario complexity, including
"adaptations to the system with external effects, to the environment with
effects to the system, to the macroarchitecture and to the microarchitecture,
and the introduction of version conflicts."

�9 Evaluation Techniques: The inputs of SAAMCS are categorized scenarios,
architecture description (micro- and macro-architecture) and measurement
instrument of scenarios' impact. Evaluation is a process that measures the
impact of these complex scenarios to the system design in a discrete and
p redef'med values. The detailed measurement instrument is described in Table
7.6. The complete process of SAAMCS is illustrated in Fig~7.10.

252 Software Architecture

Table 7.6 Measurement Instrument of Scenario Impact in SAAMCS

Measurement Items Possible Values or Description

Scenario Impact

1. No affect
2. Affect one component
3. Affect several components
4. Affect software architecture

Number of Owners The number of owners involved in the information system

Presence of Version
Conflicts

1. No problem with different versions
2. The presence is undesirable but not prohibitive
3. Creates complications related to configuration management
4. Creates conflicts

SAAMCS

and

i I

I
I

i I

I
I

I
I

I
I

Architecture
Description

Scenario
Development

Evaluate the effect
of scenarios

Single Archiiecture Analysis

Fig. 7.10 Input and activities of SAAMCS

�9 Va l ida t ion : SAAMCS has been validated in business information systems,

still without getting tested in other areas.

�9 Suppor t Tool: No available tools have been yet created to support this

method.

7 . 4 . 2 . 3 ESAAMI: Extending SAAM by Integration in the Domain

SAAM does not concern the issue of evaluation reusability specially, thus that

artifacts used in the evaluation, scenarios, hints, tactics and so on, cannot be used

again with direct support of SAAM. ESAAMI, however, creates a framework for

evaluation reuse within a domain, and builds architecture analysis templates and

reuse knowledge base (Molter, 1999).

�9 Special Goal: ESAAMI integrates the reuse-based architecture evaluation

processes tightly with the classic SAAM by accumulating the reusable

evaluation materials and knowledge. The ultimate goal of introducing reusable

evaluation is to reduce the evaluation cost and accelerate this process.

W h a t ' s more, reusable evaluation processes can be used as the attachment of
reusable architecture.

In general, three concepts that interweave with each other become the barrier

7 Evaluating Software Architecture 253

to understand this method: First, an evaluation method that can be reused
with regard to a certain domain; second, a reusable architecture that provides
the common basis for a variety of applications derived from this domain; and
last, how to perform the analysis to guarantee an architecture' s reusability.
This is done by inspecting the factors such as architecture' s abstract level,
modifiability and whether it has been comprehensively and clearly
documented. ESAAMI is an evaluation method that can be easily reused that
requires the input of reusable architecture. The third item, however, does not
concerned by ESAAMI just as mentioned in Quality Attribute section.

Domain

Reusable
Evaluation
Method

Needs

Architecture
with

Reusability

Includes

Fig. 7.11 Core concepts in ESAAMI

�9 Quality Attribute: The quality attributes involved in ESAAMI are similar

to SAAM. In fact, ESAAMI is itself reusable, but does not pay more
attention to measuring or guaranteeing the reusability of an architecture.
Architecture 's reusability is an input or a preparation of this method, and
might be evaluated, together with other quality attributes, by conventional
SAAM. Some reusability-related scenarios, such as a series of changes that
are possible within the range of a domain, can be employed to figure out the

degree to which architecture owns.
�9 SA Descript ion: For ESAAMI, a reusable skeleton architecture, which has

to reflect the common basis of applications within a domain, is required.
Authors of this method identify three kinds of software architecture
description characteristics: The description has to provide information
common enough to allow its reuse within the domain-specified area; has to be
flexible enough to cope with various customizations; has to be documented
detailed enough about architecture' s properties to allow selection and reuse.

�9 Involved Stakeholders : Involved stakeholders of this method are similar to

SAAM.
�9 Scenario Development : Authors of this method believe that it is necessary

that the available knowledge is incorporated into the future analysis. Scenario
is a typical example of this case. ESAAMI introduces the concept of
"protoscenario", which transfers the information of common use or change
cases of a domain. In fact, protoscenario is a scenario template indicating the

254 Software Architecture

generic information about a certain use or change situation. Before performing
the concrete analysis, protoscenarios have to be selected and refined with the
specified concerns of system targets and application context. More scenarios
can also be introduced just as what is done in the conventional SAAM.
Similar to SAAM, scenarios in ESAAMI, whether generated by protoscenario
refinement or proposed by stakeholders, will be classified according to
classification hints, which are def'med in the context of architecture. The
whole scenario development process is shown in Fig,7.12.

protoscenario

protoscenario
selection and
refinement

scenario elicitation

~--I scenario candidates ~,] ---

I Input scenarios for I ~
evaluation

Fig. 7.12

,' scenario selection

scenario
classification

I classification hints 1

Scenario development process in ESAAMI

Evaluation Techniques: The outstanding technique of ESAAMI is
proposing "packages of analysis templates", which collect several products
that can be reused over times. These products, focusing on the domain's
commonalities on a high abstract level and ignoring those system-specified
issues, are distributed in the various steps of ESAAMI. They are
protoscenarios, evaluation protocols, proto-evaluations, architectural hints
and weights for architecture comparison.
Besides "protoscenarios" which have been accessed above, evaluation
protocols and proto-evaluation provide a framework of how to deal with a
scenario with a set of abstract architectural elements, which will also be
extended and refined during the scenario evaluation process, just like what
proto-scenarios are processed. And architectural hint is the additional
architectural information which is bound to every scenario, facilitating the
design guideline, a pattern, for example, which enables the specified
scenario's requirements or helps to figure out which design characteristics
are typical and which are risk-hidden. This information is the product of
experience within the domain and can be applied again and again. Finally,
weights are used to support the comparison among several architectural
candidates. Typical uses of weight occur in the measurement of scenarios'

7 Evaluating Software Architecture 255

importance and scenario interactions. Weights are also reusable in many
projects in the same application domain; therefore, the results of different
evaluation have the chance to compare with each other. In conclusion,
ESAAMI is the collection of almost all the potential reusable products
resulted from SAAM. The evaluation process is shown in Fig.7.13.

Input scenarios fo~
evaluation

~ ~aluat ion protocol~

scenario evaluation ~oto-evaluations I
~rchitectural hints~

eSingle scenario -"
valuation results)

scenario interaction ______~evaluation & analysi~~..~ ,ntlltiple arcllitecture ___~ final results 1
, analysis ~ results comparison j

~ analysis protoco~ ~ weights

Fig. 7.13 Evaluation process in ESAAMI

�9 Validation: Although ESAAMI has been published for quite a long time, and
in the related articles, the detailed steps and general features are described
clearly, but it seems that the authors have not yet finished this method and
thus do not give any practical examples validating it.

�9 Support Tool: No available tools have been yet created to support this

method.

7 . 4 . 2 . 4 SAAMER:SAAM for Evolution and Reusability

SAAMER is another extension of SAAM, which was published in 1997 (Lung,
1997). Authors of this method believe that considerations of evaluation and
reusability on the architecture level get high payoff more easily. They enhance the
classic SAAM according to their experience accumulated during the work for
Nortel ' s telecommunication sy stem.

�9 Special Goal: SAAMER makes a series of optimization to SAAM in the
perspectives of sys tem ' s evolution and reusability. Through special
categorization of scenarios, this method tries to capture the potential
problems of them and evaluates their solutions.

�9 Quality Attr ibute: SAAMER concentrates on evolution and reusability

primarily.
�9 SA Description: According to the authors, four kinds of architectural views

are required to perform this method, that is, static view, map view, dynamic
view and resource view. Static view provides sys tem ' s elements topological

256 Software Architecture

information while dynamic view reflects behavioral aspects. Map view, then,
links the components to their corresponding functions "and features, and
resource view deals with resource utilization. They are, in fact, the needed
architecture description in logic level, each of which is carried in some
concrete artifacts. For example, the dynamic view can be implemented in the
manner of state machine chart, operational diagram, casual diagram, messaging
diagram or even Petri net. All of them give a concrete foundation for
evaluation rationale. These views are not necessarily generated in a sequential
order, but can be collected and complemented in several iterations.

�9 Involved Stakeholders: Aside from the stakeholders as SAAM recommends,
domain experts play an important role during scenario development and
evaluation of SAAMER.

�9 Scenario Development: An outstanding feature of SAAMER is its
mechanism of scenario development stopping. Two techniques are created to
complete this mission: Firstly, all the initially-generated scenarios are divided
according to types of objectives, including objectives of stakeholders,
architecture and quality. With the help of objective-oriented categorization
and domain experts' experience, scenarios are clustered to make sure every
objective is very covered. Secondly, SAAMER pays much attention to the
balance among scenarios of different objectives. Therefore, SAAMER uses
QFD (Quality Function Deployment) (Bot, 1996) to guarantee this point,
which makes use of a cascade of relation metrics to figure out the relational
strengths among three kinds of objectives, and thus get the priority of quality
attributes. Imbalance factor is introduced by dividing a quality a t t r ibute ' s
scenario coverage by its priority. A factor less than one means generated
scenarios for a quality attribute is too rough compared to its priority,
resulting in the creation of more scenarios.

�9 Evaluat ion Techniques: In SAAM, the change incurred by each scenario are
counted to evaluate the needed effort. SAAMER extends changes information
with their approximate estimation (low, medium, high) and relevant domain
expert experiences. Another concern point of SAAMER is scenario
interaction analysis. High level interaction means the terrible decomposition
of components, except which is the nature of a specific architectural pattern.
What ' s more, architectural styles and design violation are identified to serve
the analysis, which are not included in SAAM, allowing overall consistent
checking. Finally, three tabular representations are generated as the raw result
of evaluation to be interpreted and concluded. They are an objective-based
analysis result, a summary of scenario interaction and a summary based on
quality. The evaluation framework is shown in Fig,7.14.

�9 Validat ion: SAAMER has been applied in the development of several
telecommunication systems of Nortel.

�9 Support Tool: No available tools have been yet created to support this
method.

7 Evaluating Software Architecture 257

Fig. 7.14 SAAMER framework 2

7 . 4 . 2 . 5 ATAM: Architecture Trade-off Analysis Method

ATAM is a powerful evaluation model which is suitable, unlike many other
evaluation methods, for dealing with the competition of multiple quality attributes.
Although SAAM can be deployed in evaluating quality attributes other than
modifiability, currently missions of this like normally adopt ATAM. ATAM was
released in (Kazman, 1998) and improved in (Kazman, 1999).

�9 Special Goal: A T A M ' s objective is to provide a principal way of
understanding a software architecture' s capability with respect to multiple
competing quality attributes. (Barbacci, 1998). Besides the influence incurred
by scenarios and potential problems hidden in the architecture, the links of
several quality goals will be exposed and analyzed.

�9 Quali ty At t r ibute : ATAM is a process that tells us how to identify the
trade-off points of architecture, rather than lean especially to any quality
attribute, but focuses on the competing relation among multiple quality
attributes. However, in the initial article about this method, availability,
performance, modifiability and security were involved.

�9 SA Descript ion: An architecture description that can be easily understood
by various participant stakeholders should be used in SAAM, which at least

2 The scenario in the figure means identical to "use case" for keeping consistent with term used in
(Lung, 1997), rather than what we' re declared in the start of this chapter.

258 Software Architecture

shows the sys tem's static composition of primary computation and data
components and their relationships. Besides them, sys tem's dynamic
behaviors over time should be included in SAAM's needed description.

�9 Involved Stakeholders: This method is divided into two phases, in the first
of which only architects and project managers are needed to participate,
while in the second, all stakeholders' involvement is recommended to
guarantee everyone's concerns can be taken into account.

�9 Scenario Development: Just as SAAM, ATAM encourages a brain storm
and thus generating scenarios as more as possible. After that, through
prioritization, only several most important ones are kept for later analysis.
The principal difference exists in constructing a complete set of scenarios,
for which CMU SEI develops a collection of assistant questions for each
common quality attribute. Scenarios fall in three categories: the use scenarios,
probing the typical use cases of target system; the growth scenarios,
representing the potential changes; and the exploratory scenarios, inspecting
the sys tem's behaviors and status during "high stress".

�9 Evaluation Techniques: Aside from the skills used in generating scenarios,
ATAM has three other outstanding features. The first one is the application
of ABAS (Attribute-Based Architectural Styles). ABAS is a kind of
architectural style that provides heuristic design guide information against
quality attributes. The second one is utility tree. ATAM explicitly adopts
sight to the system from two distinct perspectives, the designers' and other
stakeholders'. By utility tree, the architects or project managers express that
how they understand target system and what the final system looks like.
What 's more, through the comparison between scenarios in utility tree and
in the list generated by other stakeholders, we can discover easily whether
the original understanding is deviated or misses something important. The
third one is the identification of sensitivity points and trade-off points.
Sensitivity can be used to identify the significant changes of sys tem's
appearance by the change to some architecture elements, such as response
time, available proportion, etc. Trade-off point, then, is the architecture
element that contains multiple competing sensitivity points. They are the
core of this method, helping people solve the problem of interweaving of
various quality attributes.

�9 Validation: ATAM has been applied in many projects, such as Battlefield
Control System, Remote Temperature Sensor System and so on. However,
this method still stands in the evolution phase. Enhancement to it never
stops.

�9 Support Tool: Some ATAM support tools have been published to reduce
the heavy manual and facilitate the communication of stakeholders
distributed in different locations of the world. For example, ACE (ATAM
Collaborative Environment) (Maheshwari, 2005) is a Web-based common
platform enabling stakeholders take part in ATAM without having to be

7 Evaluating Software Architecture 259

physically co-located. Another tool that is under development is "ArchE"
(Bachmann, 2003), where ATAM assistant is integrated into the architecture
design environment.

7 . 4 . 2 . 6 SBAR: Scenario-based Architecture Reengineering

SBAR is a framework of evaluating detailed architecture by introducing an iteration
process of quality assessment and architecture transformation (Bengtsson, 1998).

�9 Special Goal: SBAR targets to drive the architecture redesign with respect
to quality attributes. This method wants to make sure that sys tem's
architecture fulfill the desired non-functional properties.

�9 Quality Attr ibute: SBAR deals with multiple quality attributes. In fact, just
like ATAM, SBAR does not create new methods against each specific
attribute, but adopts the typical ones published previously, for example, for
real-time, high performance and reusable system.

�9 SA Description: SBAR needs the initial architecture descriptions which are
created according to the functionality requirements. Considering that this
method is designed to facilitate system's reengineering, a detailed architecture
should be fed for the subsequent evaluation processes.

�9 Involved Stakeholders: This method focuses on reen~neering of
architecture, resulting in that the designers have to take part in this
evaluation.

�9 Scenario Development: SBAR does not mention how to develop needed
scenarios in detail and unique techniques. However, it requires a
representative set of scenarios concretizing each quality attribute needing
concerns, both explicit and implicit ones, and thus facilitating reengineering
processes. A weakness point of this method is that "a representative set of
scenarios" has no clear definition, leading to that you cannot tell when to
stop generating scenarios exactly.

�9 Evaluation Techniques: SBAR provides a framework in an iteration
fashion, as Fig. 7. 15 shown, with new requirement specification, a
functionality-based architecture redesign is performed, which, then, together
with the architecture are fed as the input of evaluation processes. Two parts
of evaluation, quality assessment and architecture transformation construct a
loop, during which each necessary quality attribute is accessed and guaranteed
to be supported. In the quality assessment part, four kinds of methods:
scenario-based evaluation, simulation, mathematical modeling and experience
reasoning, are used normally according to evaluation context, in which, of
course, scenario-based method dominates. In the architecture transformation
part, five methods are adopted. They are "Impose architectural style",
"Impose architectural pattern", "Apply design pattern", "Convert quality
requirements to functionality" and "Distributed requirements". This loop
will end until most significant scenarios for each quality attribute are
satisfied.

�9 Validation: SBAR has been applied in a measurement system for detailed

260 Software Architecture

Requirement x)
Specification

Functi~ I ._1
Architecture Reaesig. I "-I

Quality Attribute
Optimizing

Transformations

Architecture
Transformations

l 1 notOK

Quality Assessment I
I oK

Implementation

Fig. 7.15 SBAR evaluation processes

architecture reengineering,
�9 Support Tool: There is no available support tool explicitly for this method,

partially because it just describes evaluation framework, and will get
contextually varied.

7 . 4 . 2 . 7 ALPSM: Architecture Level Prediction of Software Maintenance

ALPSM is a distinct evaluation method for its predominant result, the estimation of
maintenance effort needed in the system built according to the architecture, rather
than figuring out the potential defects or trade-off points of architecture design
which is generated by many other evaluation methods (Bengtsson, 1999).

�9 Special Goal: ALPSM provides the estimated maintenance effort needed in a
series of change scenarios. Size of changes is used as the predicator to reach
this point.

�9 Quality Attribute: ALPSM is not a method to check whether a single or
multiple quality attributes are fulfilled by architecture, or the degree to which
these attributes are satisfied. Therefore, its concerns do not meet this
comparison framework very well. However, we can take the maintainability
inspection indirectly by getting the needed maintenance effort.

�9 SA Description: ALPSM requires the final version of detailed architecture
description.

�9 Involved Stakeholders: Only architects, designers, domain experts and
maint enance members are needed t o p articip at e in this method.

�9 Scenario Development: In this method, only change scenarios should be
generated for the subsequent analysis. The scenario development here is the
job of architects or domain experts, who have much experience in predicting
the possible changes to the system. These scenarios are distributed evenly in
several categories of maintenance tasks, such as hardware changes, safety
regulation changes, etc. Scenarios are also prioritized in this method, all of
which are weighed by the relative probability of them resulting in a
maintenance task during a particular time interval. The more frequent a

7 Evaluating Software Architecture 261

Architecture Description

Expertise from
software engineers

I Historical Maintenance I
!
, Data 1
t_

scenario is possible to occur, the higher its weight values. The possibility can
be extracted from s y s t e m ' s historical maintenance records from similar
application or previous release, if any; otherwise, the architects or domain
experts are responsible of estimating scenarios' weights.

Requirement ~

Specification AfALPSM Evaluation "~

Estimated Maintenance
1 .Identify categories of maintenance tasks Effort
2.Synthesize scenarios
3.Assign each scenario a weight
4.Estimate all the elements

J 5.Script the scenarios
6.Calculate the predicted maintenance effort Maintenance Profile

Fig. 7 . 16 ALPSM evaluation method

�9 Evaluation Techniques: The process of this method is straightforward: Its
input contains requirement specification, architecture description, expertise
from software engineers and historical maintenance data, if any. Next, six
steps, shown in Fig.7.16, are performed one by one, by which participants get
the estimate information. Two points should draw our attention. One is that
all the maintenance tasks are categorized in the first step, aiming at expressing
the maintenance requirement more clearly and hence helping participants get a
better understanding of the system. Another one is the measurement of
maintenance effort. The size of all components in the system is determined
by one of the three measurement methods: estimation technique of choice,
adaption of an object-oriented metric " SIZE2" (Chidamber, 1991), or
historical components' size data, if historical data can be found. The effort
incurred by a specified scenario is calculated by determining the components
that are affected by this scenario and the extent to which it is modified. And
the total estimated effort of maintenance is predicted by the sum of the
product of the effort incurred by each scenario and its probability weight, as
shown in Fig.7.17.

Mtota 1 = (P(S~) �9 ~-~V(Sn,Cm))
n = l m = l

P (S~) the probability weight of scenario n
V(S~, Cm) the affected volume of component m in scenario n

k, number of scenario s
kc number of components in architecture

Fig. 7 .17 Formula for prediction of total maintenance effort

�9 V a l i d a t i o n : ALPSM has been applied in a haemo dialysis system.
�9 Support Tool: No available tool has been released to support this method

explicitly.

262 Software Architecture

7 . 4 . 2 . 8 SAEM. Software Architecture Evaluation Model

SAEM is an evaluation model which is based on quality model standards and quality
assessment processes (IEEE, 1998; IEEE, 1989a; IEEE, 1989b). It was published in
(Duenas, 1998). Compared to a concrete evaluation method, SAEM should be taken
to a reference understanding of software quality assessment. In other words,
concepts and models in quality evaluation are identified and described in such a
general way that it can cover most specific evaluation methods.

�9 Special Goal: SAEM creates the foundation of software quality issues and
evaluation processes. It describes what software quality is and the general
strategies to analyses of the categories and degrees to which sys tems '

architecture fulfill.
�9 Quality Attribute: The quality attributes referred in SAEM is different

from those which we have been familiar with, due to their higher level
abstraction. They are divided into "internal" and "external" ones. External
qualities reflect the characters which can be seen from users' perspectives,
while the internal ones express the characters relevant to developers' views.
The external ones are specified by both users and developers and the internals
ones are only decided by developers. The concept "user" and "developer"
here have more general meanings, with respect to which every software
development process can be split into severalphases and each of them
generates a product. The people creating products are developer and the
people using products are user. For example, the final version architecture
itself is an intermediate product whose users may be the programmers that
implement it. Metric specifications for these quality attributes, internal or
external ones, are benefit to their measurement and evaluation.

�9 SA Description: Following categorization of quality attributes, software
architecture is also separated to internal views and external views. SAEM
recommend a software architecture description attached with evaluation
assistant questions or inspection techniques (such as software architecture
model walkthrough), which provides the chance to detect the elements that
support the desired quality attributes. Architecture Description Language
(ADL) with formalization model is a good case facilitating this.

�9 Involved Stakeholders: SAEM does not regulate who should take part in
the evaluation process explicitly, but only mentions that system experts are
responsible of evaluating architecture.

�9 Scenario Development: 8AEM does not focus on the effect of scenario.
Scenario-based method should be one of several evaluation techniques,
including checklists or questionnaires.

�9 Evaluation Techniques: SAEM is a general evaluating model, containing the
phases" quality attributes specification, quality measurement and analysis and
result interpretations. This model involves users and developers with respect
to software 's external and internal characteristics. System experts should link
the quality attributes to architecture elements with the help of e x p e r t ' s

7 Evaluating Software Architecture 263

knowledge and company accumulated data.
�9 Validation: SAEM has never been validated in any practical application.

But you may find its ideas in some more concrete evaluation methods.
�9 Support Tool: There is no support tool available for SAEM.

7 . 4 . 2 . 9 PASA: Performance Assessment of Software Architecture

"Software 's performance cannot be retrofitted. It must be designed into software
from the beginning, The make it run, make it run right, make it run fast ' are
dangerous." (Williams, 2002a). This is the basic motivation of PASA, a method
coming from Williams and Smith's work presented in the report (Williams, 2002b).
PASA is performed through 9 steps, as shown in Fig. 7. 18. We provide a brief
introduction to each of them.

Step 1: Process Overview: This is a presentation that introduces the general
steps of PASA, motivation of assessment, and the whole process' outcome. It helps
improve participants ' familiarity with what they should do, which actions are
suitable and benefit to the assessment, and thus avoid doing something nonsensical.

Step 2: Architecture Overview: As the basis for the subsequent activities,
architects have to describe current architecture designs and explain those critical
structure or behavior specifications that the assessment needs.

Step 3: Identification of Critical Use Cases: Try to find the external visible use
cases that reflect the important system behaviors, especially those tightly relevant
to responsibility and scalability.

Step 4: Selection of Key Performance Scenarios: From the critical use cases
.generated in the previous step, the important performance-related scenarios are
identified.

Step 5: Identification of Performance Objectives: Each scenario involved in
assessment should be measurable; therefore, assessment participants have to define
the performance objectives against each key performance scenario.

Step 6: Architecture Clarification and Discussion: It is the time to inspect the
architecture elements in more deep detail that influence the realization of the
scenarios above. This is achieved by participants' further discussion about
sys tem's architecture, through which the potential problem areas will be exposed.

Step 7: Architecture Analysis: Against each key performance scenario, analysis
of architecture is conducted to figure out that whether current design can support
the corresponding performance objectives.

Step 8: Identification of Alternatives: If some problems exist (in fact, in most
cases it is), ori/~nal architecture should be fine-tuned in local area by alternating
structures which are capacity to meet the objectives. Sometimes, the whole
architecture style is replaced to repair its performance problems.

Step 9: Presentation of Results: This is the final presentation of assessn-ent's
conclusion, including the found problems, plan of architecture modification,
estimated work and cost on modification.

You can find that PASA is a typical variation of common evaluation activities
mentioned before, and armed with some unique features focusing performance.

264 Software Architecture

Process Ove rv i ew

Possible Iteration
AIr _ - ~ ..,%

Select ion of Key
Archi tecture ~ Ident i f ica t ion of ~ Pe r fo rmance

Overview Crit ical Use Cases
Scenarios

Possible Iteration

Presentat ion of
Results

Ident i f ica t ion of
Al ternat ives

Arch i t ec tu re
Analys is

Ident i f ica t ion of
Pe r fo rmance
Objec t ives

/
Archi tec ture

Clar i f ica t ion and
Discuss ion

Fig. 7.18 PASA evaluation process

�9 Special Goal: PASA aims to evaluate the performance capability of

architecture candidates and deal with trade-off,issues between performance
concerns and other quality attributes, such as modifiability and reliability.

�9 Quali ty Attr ibute: Performance is the center of this method 's target quality

attributes. The authors believe that a sys tem' s performance is tightly related
to its architecture, rather than coding issues. In PASA, all other quality
attributes, which interact with performance, are also taken into account.

�9 SA Descr ipt ion: PASA needs very detailed architecture description to allow

its execution. But according to authors ' experience, there will be very little
architecture information, if any, which has been documented. Even though
architecture documents are available, they are also too informal to express
their meaning or too old to reflect sys tem' s current state. Therefore, in order
to overcome this problem, several techniques are used to recover architecture
information, including deduction from developer interviews, source code, and
other artifacts. Scenario development for the use of system is also a fantastic
way. to extract architecture information. Therefore, the second to fourth
steps will be performed in an iterative way to guarantee architecture

information' s gradual clarification.
�9 Involved Stakeholders: Architects, project managers, developers and

performance experts are required in this method. Other stakeholders '
involvement will improve the effect of trade-off analysis between

performance and other quality attributes.
�9 Scenar io Deve lopment : Key performance scenarios are identified from those

critical use cases, which are collected from requirement documents or other
materials. If there is no enough information available to generate use cases,
such as assessment for legacy system, assessment team should work together
with development team to identify those use cases. Two kinds of scenarios
should be kept, one of which is executed frequently and reflects users
perception of performance, and another of which is executed not so
frequently but will incur severe influence to the system if it is bad in
performance, e.g, crash recovery. All the scenarios, each of which is attached
by one or several performance objectives, are documented in au~nented
UML sequence diagram.

7 Evaluating Software Architecture 265

�9 Evaluatign Techniques: PASA adopts techniques based on architecture
pattern to perform architecture analysis. Deviations from typical patterns or
styles are identified and ~ evaluated to show its effects to s y s t e m ' s
performance. If there is any negative effect or the deviated patterns to match
any anti-patterns (Smith, 2000), architecture time-tuning or refactoring
(Brown, 1998) are performed to fix the problems. Some performance
modeling strategies includes (Ltithi, 1997)and (Majumdar, 1991).

�9 Validation: PASA has been applied in several projects, including Web-based
system, real time system and financial system. These cases are listed in
(Smith, 2001).

�9 Support Tool: There is no support tool available for PASA.

7 . 4 . 2 . 1 0 ARID: Active Reviews for Intermediate Designs

Most methods mentioned above perform evaluation on the whole architecture.
However, sometimes we may need a review on the early design or partition of the
entire system, where some design strategies or decisions should be reviewed under
the case that not all the architecture information is available. This kind of evaluating
object is called intermediate design, which requires a different method to check its
suitability. ARID is such a method by combing the best of Active Design Reviews
(ADR) (Parnas, 1985) and scenario-based evaluation method, such as SAAM or
ATAM.

"Active Design Reviews" features the review style that tries to improve effect
by assigning reviewers the active review tasks that are carefully structured in order
to eliminate the chance that reviews behave slackly on theft duties. This is achieved,
for example, by avoiding the questions that expect the "yes/no" answers. The target
of ADR is to guarantee the actual consideration and understanding of the reviewed
designs. ADR mainly depends on individually debrief'rag the reviews, which is not
so effective in encouraging group buy-in.

The ATAM, however, will collect all kinds of stakeholders to carry out
evaluation, and adopt evaluation tech.niques such as utility trees or analysis of
architectural approaches. This is facilitated to evaluate the entire architecture, not to
the preliminary designs, which may be short of detailed information. Besides that,
complex evaluation techniques are also not necessary for intermediate designs.

ARID, created by CMU SEI, is the hybrid of ADR and scenario-based
evaluation methods, providing useful techniques for preliminary designs (Clements,
2000). It contains 6 steps within 2 phases as shown in Table 7.7. They are self-
explained, but the techniques used are son~hing tricky and will be introduced in below.

�9 Special Goal: ARID is a lightweight review method for insuring the quality-
detailed design in software with active driven techniques to avoid reviewers'
carelessly-considered p articip ating,

�9 Quality Attribute: Due to target not to architecture evaluation, but only
checking the suitability of preliminary design, ARID does not focus on
specific quality attributes. As a matter of fact, it is more like a test that the
users of this design decide whether it can be used.

266 Software Architecture

Table 7.7 Phases and Steps in ARID

Phases

Phase 1: Pre-meeting

Phase 2: Review-meeting

Steps

Step 1: Identify reviewers

Step 2: Prepare design presentation

Step 3: Prepare seed scenarios

Step 4: Prepare for the review meeting

Step 5: Present ARID method

Step 6: Present design

Step 7: Brainstorm and prioritize scenarios

Step 8: Perform review

Step 9: Present conclusions

�9 SA Description: No detailed information documents are required. This

method can be performed in the early design phase when complete documents
have not been finished, or to be part of software in the case that other par ts '
design information is unavailable. When certain architecture information is
urgently needed, architect has the duty to take reasonable assumptions.

�9 Involved Stakeholders: ARID combines the concept "reviews" of ADR

with "stakeholders" used in scenario-based methods, and divides them into
three classes. The first one is lead designer who is the spokesperson
presenting the design and following the review result. The second one is
reviews, including various people who have the vested interests in the
prOject. Among them, software engineers, the users of this design, are the
direct benefit-gainers, and thus the most important participants. The third
one is review team, where three roles should be filled. A facilitator helps
preparing and running the review; a scribe is responsible of capturing
reviews' input and result; and one or more questioners will facilitate eliciting
and craft scenarios. Optionally, there is an additional role, process observer,
who can record the encountered difficulties and provide suggestions for

imp roving method.
�9 Scenario Development: Scenario development is split into two steps

existing in each phase. In the pre-meeting phase, seed scenarios are generated
to allow reviews' insight about what scenarios are suitable. In the review-
meeting phase, a brainstorm on scenario generating is taken, in which various
scenarios about how to "use" the design are proposed. All of them, including
the seed scenarios, are put into the "candidate scenario pool", waiting for the
prioritization process, which is usually based on voting. The most critical
scenarios are identified to put as the standard of this review.

�9 Evaluation Techniques: ARID insists the ground rule that it inspects the

7 Evaluating Software Architecture 267

use of a design, not the rationale behind it, or other possible alternatives. This
rule reflects in detail techniques among the review. For example, when the
lead designer presents the overview of design, .he or she has to concentrate on
how to use that design and what services it provides. In the review step,, for
each scenario, the reviews simulate using that design, even in an extensive
way by craft code (or pseudo code) to finish the task they concern, during
which designers are not allowed to give any hints or help. But reviewers can
ask designers to explain something they care. Another technique that features
ARID is its activeness. To guarantee the high-fidelity review result, reviewers
are forced to finish their job, such as reading design documents or making
suggestions, with effort. Any questions that can be answered perfunctorily,
for instance, with simple "yes" or "no", are banned, all of which are replaced
with exercises that reviews have to take carefully. For example, the question
"Are there any exceptions defined for every program?" is substituted by
"Write down the exceptions that can occur in every program." The question
"Are the program sufficient?" isreplaced with "Write down the pseudo code
that uses this design to complete a certain program task."

�9 Val idat ion: ARID has been applied in a pilot control system. You can find
this study case in (Clements, 2000) or (Clements, 2003b).

�9 Suppor t Tool: There is no support tool available for ARID.

7 . 4 . 2 . 1 1 CBAM: Cost-Benefit Analysis Method

CBAM introduces cost-benefit into the consideration of decision making during
architecture design. During architecture evaluation, sponsors or organizations have
adequate reasons to expand their economic gains and avoid risks as much as they
can. Other evaluation methods, some pay attention to a single quality attribute, e.g.
PASA; some focus on trade-off among various quality targets, e.g, ATAM; and
some lean to evaluation knowledge' s reusability, e.g, ESAAMI. But most of them
take the assumption that the stakeholders only care about s o f t w a r e ' s quality
without any cost limitation. Even so, this concern is ignored in evaluation methods'
abstract description, and only appears in an informal manner when evaluation is
applied. CBAM correct this problem by taking into account the finite resource
(Asundi, 2001; Kazman, 2001a; Kazman, 2001b).

�9 Special Goal: The CBAM helps sys tem's stakeholders get the information
of cost and, possibly more important, benefit which are resulted from the
architecture decisions, and thus guide them to choose a certain architectural
alternative under finite resource concerns. From Fig. 7. 19 we can find that
business goal drives the architecture decisions, which incur cost and achieve
some quality attributes, such as P, A, S, M (representing Performance,
Availability, Security and Modifiability). They in turn lead to economic
implications for the benefits. C B A M ' s ultimate goal is to identify these cost
and benefits, and maximizes their difference.

�9 Qual i ty At t r ibute : CBAM attaches the cost and benefits analysis
information to the corresponding quality attributes. In this way, stakeholders

268 Software Architecture

Fig. 7.19 Context of CBAM

have the chance to make the decision that put most resource to the best
architecture strategy that increases benefits.
SA Description: Only the architecture strategies which are clear enough for
performing cost and benefit analysis are required.
Involved Stakeholders: All the key stakeholders should take part in this
evaluation. It is feasible that project managers decide which stakeholders are
the key ones and necessary to be present.
Scenario Development: Scenarios are generated just as ATAM to provide
the concrete representation of quality attributes.
Evaluation Techniques: Two phases are employed in this method. The first
one is "Triage Phase", which means various architecture strategies are
estimated cursorily. For example, architecture strategies' influence on quality
attributes is rated with a five-point scale (+ +, +, 0, - , - -) and their costs are
estimated with three-point scale (High, Medium, Low). Those strategies with
comprehensively high benefits and low cost are kept. Of course, some
strategies, due to law or the standards, have to be reserved either, although
they seem not so "good". The second one is "Detailed Examination Phase",
where a more precise and quantitative model is used for estimating each
architecture strategy' s " Return on Investment" (ROI). Each quality
attribute 's importance is weighted as "QAScore ' , which has to fulfill the
rule:

QAScorej : 100 A V QAScorej ~ 0
J

Architecture strategies' influence is also quantified as "ContriScore" with a
value during +1 to -1. Therefore, for each architecture strategy ASi against
each quality attribute QAj, its benefit value is"

Benefit (AS~) ~ ~ ContriScore;,i X QAScorei
J

The QAScore and ContriScore can be gained through voting. And then, each

7 Evaluating Software Architecture 269

architecture s t ra tegy 's cost is estimated by some methods, which is not
limited by CBAM. Therefore, the return value of architecture strategies is
calculated:

Benefit (AS i)
Retum(AS i) - -

Cost (A S /)

Finally, different strategies are ranked as their mean return value, together
with some other concerns. This is under the assumptions that the distribution
of retum values is symmetric among the mean value. For more precise
estimation, a more complex probability-based evaluation model and a
Portfolio Theory Framework have also been developed.
Val idat ion: CBAM has been applied in NASA' s Earth Observing System
Data Information System (EOSDIS) Core System (ECS) which is still under
development.
Support Tool: There is no support t0ol published for CBAM.

7.5 Summary

In this chapter, we inspect one of the most important activities based on
architecture information--architecture evaluation. After all, if we have no handy
tool like this, we cannot identify our architecture's suitability for quality
requirements, especially when formalized methods cannot be applied in real projects
well. Therefore, developers have to hold tests after accomplishment of part of
codes, which will incur high, or even infeasible, cost and time-to-market. Tlle reason
why architecture evaluation takes effect is that so f tware ' s quality is primarily
determined by architecture. Never be doubt about this point, which has been
demonstrated by thousands of development. The difficulty is, however, to find the
bridge linking quality and architecture. Even that, evaluation is neither solving an
equation or model purely, nor following a set of fixed steps. Most techniques are to
encourage people to make use of the comprehensive ideas from them. Although we
describe certain evaluation methods' steps, they are actually still reference to allow
easy understanding, Practitioners should vary them according to what they want and
what they need.

Before evaluation, software quality has to be defined and measured first. In this
chapter, it is decomposed to several quality attributes, which further can be
described in the format of scenarios. Scenarios, which can be defined precisely, avoid
the ambiguous quality description. It is scenario that opens the gate to evaluation,
because nobody is capable of assessing something that cannot be expressed and
measured clearly. In short, scenario is the bridge we expect.

Most architecture evaluation methods are designed based on scenarios. We
introduce two most famous evaluation methods, SAAM and ATAM, in detail.
SAAM is an intrinsic method that searches affected architectural elements against
scenarios, while ATAM, on the basis of SAAM, focuses on identifying potential

270 Software Architecture

risks, non-risks, sensitivities and trade-offs.
SAAM and ATAM expose the impression of common features of most scenario-

based evaluation methods. They get the input of scenarios and architecture
description, evaluate and judge whether current architecture (or several architecture
candidates) is capable of meeting desired quality requirements. Potential defects and
risks are identified, which then become the motivation of modification. Finally, raw
evaluation results are collected and prepared for the following use, such as hints of
future development or historical data accumulated for reuse.

From various varied editions of SAAM to the new CBAM, they follow the
similar process as mentioned above. But each of them owns its unique concerns.
SAAM is simple and particularly effective to evaluation s y s t e m ' s modifiability,
hence suitable for small and evolution-required system. ATAM is far more
complicated, and it combines lots of information and identifies the places needing
urgent attentions against desired quality attributes and clarifies why architecture
looks like what it is before evaluation. Therefore, ATAM is good at large projects,
particularly for those involving many undetermined factors. Some methods focus on
one single quality attribute. If you care about maintainability, you may choose
ALPSM. If you want to analyze performance, PASA should be your assistant. For
cost concerns, then, CBAM is the best choice. Via reading the brief introduction to
eleven methods and learning their features, you can find which one is what you want
under specific needs, even though you do not know how it is performed exactly. For
doing that, you should read reference materials specifically on them.

We emphasize again that do not use those evaluation methods by rote. Some of
them are still in research. Some others have been verified, but may be ineffective in
different environment. Reality is flexible, thus it needs flexible solution. Just
remember the principles, think about why evaluation is so useful (we wrote them
above). Maybe sometimes you will create some brand-new methods that earn
numerous benefits in your job.

References

(Abowd, 1997) Abowd, G., et al. Recommended Best Industrial Practice for
Software Architecture Evaluation, Techincal Report, CMU/SEI-96-TR-025,
1997.

(Allen, 1997) Allen, R. & Garlan, D. A Formal Basis for Architectural Connection.
A C M Transactions on Software Engineering and Methodology 1997 (6):
213-249.

(Asundi, 2001) Asundi, J., Kazman, R. & Klein, M. Using Economic
Considerations to Choose among Architecture Design Alternatives, Techincal
Report, CMU/SEI-2001-TR-035, 2001.

(Babar, 2004) Babar, M. A. & Gorton, I. Comparison of Scenario-Based Software
Architecture Evaluation Methods. In: Software Engineering Conference, 2004.

7 Evaluating Software Architecture 271

1 lth Asia-Pacific, p p. 600-607.2004.
(Bachmann, 2003) Bachmann, F., Bass, L. & Klein, M. Preliminary-Design of

Arche: A Software Architecture Design Assistant, Techincal Report, CMU/
SEI-2003-TR-021, 2003.

(Barbacci, 1998) Barbacci, M., et al. Steps in an Architecture Tradeoff Analysis
Mehtod: Quality Attribute Models and Analysis, Techincal Report, CMU/
SEI-97-TR-029, 1998.

(Bass, 1998) Bass, L., Clements, P. & Kazman, R. Software Architecture in
Practice, 1st ed.: Addison Wesley/Pearson 1998d.

(Bass, 2003) Bass, L,, Clements, P. & Kazman, R. Software Architecture in
Practice, 2nd ed.: Addison Wesley/Pearson 2003.

(Bengtsson, 1998) Bengtsson, P. & Bosch, J. Scenario-Based Software Architecture
Reengineering. Proceedings Fifth International Conference on Software Reuse,
Victoria, BC, Canada.1998:308-317.

(Bengtsson, 1999) Bengtsson, P. & Bosch, J. Architecture Level Prediction of
Software Maintenance. Proceedings of the Third European Conference on
Software Maintenance and Reengineering, Amsterdam, Netherlands. 1999:
139-147.

(Boehm, 1976) Boehm, B., Brown, J. & Lipow, M. Quantitative Evaluation of
Software Quality. Proceedings of the 2nd international conference on software
engineering; San Francisco, California, United States.1976:592-605.

(Boehm, 1986) Boehm, B. A Spiral Model of Software Development and
Enhancement. ACM SIGSOFT Software Engineering Notes 1986(11): 14-24.

(Bot, 1996) Bot, S., Lung, C. H. & Farrell, M. A Stakeholder-Centric Software
Architecture Analysis. Approach Joint proceedings of the second international
software architecture workshop (ISAW-2), San Francisco, California, United
States.1996:152-154.

(Brown, 1998) Brown, W., et al. Antipatterns: RefactoringSoftware, Architectures,
and Projects in Crisis. New York: John Wiley & Sons.1998.

(Chidamber, 1991) Chidamber, S. R. & Kemerer, C. F. Towards a Metrics Suite for
Object Oriented Design. Conference proceedings on Object-oriented
programming systems, languages, and applications. Phoenix, Arizona, United
States.1991:197-211.

(Clements, 2000) Clements, P. Active Reviews for Intermediate Designs, Techincal
Report, CMU/SEI-2000-TN-009 2000.

(Clements, 2003) Clements, P., Kazman, R. & Klein, M. Evaluating Software
Architectures: Methods and Case Studies. Pearson Education.2003.

(Dobrica, 2002) Dobrica, L. & Niemela, E. A Survey on Software Architecture
Analysis Methods. Software Engineering, IEEE Transactions on 2002(28):
638-653.

(Duenas, 1998) Duenas, J. C., de Oliveira, W. L. & de ia Puente, J. A. A Software
Architecture Evaluation Model. In: Development and Evolution of Software
Architectures for Product Families. Second International ESPIRIT ARES

272 Software Architecture

Workshop. Proceedings (van der Linden, F., ed., pp. 148-157. Sp ringer-Verlag,
Las Palmas de Gran Canaria, Spain.1998.

(IEEE, 1989a) IEEE. IEEE Standard Dictionary of Measures to Produce Reliable
Software. 1989a.

(IEEE, 1989b) IEEE. IEEE Guide for the Use of IEEE Standard Dictionary of
Measures to Produce Reliable Software.1989b.

(IEEE, 1998) IEEE. IEEE Standard for a Software Quality Metrics Methodology.
1998.

(Inverardi, 2000) Inverardi, P., Wolf, A. L. & Yankelevich, D. Static Checking of
System Behaviors Using Derived Component Assumptions. A C M
Transactions on Software Engineering and Methodology 2000(9): 239-272.

(Kazman, 1994) Kazman, R., et al. Saam: A Method for Analyzing the Properties
of Software Architectures. Proceedings of 16th International Conference on
Software Engineering, Sorrento, Italy.1994:81-90.

(Kazman, 1996a) Kazman, R. Tool Support for Architecture Analysis and Design.
In: Joint proceedings of the second international software architecture
workshop (ISAW-2) and international workshop on multiple perspectives in
software development (Viewpoints '96) on SIGSOFT '96 workshops pp.
94-97. ACM Press San Francisco, California, United States 1996a.

(Kazman, 1996b) Kazman, R., et al. Scenario-Based Analysis of Software
Architecture. Software, IEEE 1996b(13): 47-55.

(Kazman, 1998) Kazman, R., et al. The Architecture Tradeoff Analysis Method.
Proceedings Fourth IEEE International Conference on Engineering of Complex
Computer Systems. ICECCS '98, Monterey, CA, USA.1998:68-78.

(Kazman, 1999) Kazman, R., et al. Experience with Performing Architecture
Tradeoff Analysis. Proceedings of the 1999 International Conference on
Software Engineering. Acm. 1999.

(Kazman, 2000) Kazman, R., Carri~re, S. J. & Woods, S. G. Toward a Discipline of
Scenario-Based Architectural Engineering. Annals Of Software Engineering
2000(9): 5-33:

(Kazman, 2001a) Kazman, R., Asundi, J. & Klein, M. Making Architecture Design
Decisions: An Economic Approach, Techincal Report, CMU/SEI-2001-TR-
035, 2001a.

(Kazman, 2001b) Kazman, R., Asundi, J. & Klein, M. Quantifying the Costs and
Benefits of Architectural Decisions .200 lb:297-306.

(Klein, 1993) Klein, M., et al. A Practitioner's Handbook for Rea/-Time Analysis.
Norwell, MA, USA: Kluwer Academic Publishers.1993.

(Liathi, 1997) Liathi, J., et al. Performance Bounds for Distributed Systems with
Workload Variabilities and Uncertainties. Parallel Computing 1997 (22):
1789-1806.

(Lassing, 1999) Lassing, N., Rijsenbrij, D. & Viliet, H. On Software Architecture
Analysis of Flexibility, Complexity of Changes: Size I s n ' t Everything.
Proceeding of the Second Nordic Software Architecture Workshop (NOSA'99).

7 Evaluating Software Architecture 273

1999:1103-1581.
(Li, 1993) Li, W. & Henry, S. Object-Oriented Metrics That Predict

Maintainability. Journal of Systems and Software 1993(23): 111-122.
(Lung 1997) Lung, C. H., et al. An Approach to Software Architecture Analysis

for Evolution and Reusability In: Proceedings of the 1997 conference of the
Centre for Advanced Studies on Collaborative research, CASCON '97, pp. 15
-26. IBM Press, Toronto, Ontario, Canada.1997.

(Maheshwari, 2005) Maheshwari, P. & Teoh, A. Supporting Atam with a
Collaborative Web-Based Software Architecture Evaluation Tool. Science of
Computer Programming 2005(57): 109-128.

(Majumdar, 1991) Majumdar, S., et al. Performance Bounds for Concurrent
Software with Rendezvous. Performance Evaluation 1991(13): 207-236.

(Marco, 2004) Marco, A. D. & Inverardi, P. Compositional Generation of Software
Architecture Performance Qn Models. Proceedings. on the Fourth Working
IEEE/IFIP Conference on Software Architecture (WICSA 2004), Oslo,
Norway .2004:37-46.

(Molter, 1999) Molter, G. Integrating Saam in Domain-Centric and Reuse-Based
Development Processes. In: Proceedings of the 2nd Nordic Workshop on
Software Architecture, Ronneby, Sweden.1999.

(Parnas, 1985) Parnas, D. L. & Weiss, D. M. Active Design Reviews: Principles
and Practice. Proceedings of the 8th international conference on Software
engineering Longdon, England.1985:132-136.

(Smith, 2000) Smith, C. U. & Williams, L. G. Software Performance Antipatterns.
Proceedings of WOSP2000: Second International Workshop on Software and
Performance, Ottawa, Ont., Canada.2000:127-136.

(Smith, 2001) Smith, C. U. & Williams, L. G. Performance Solutions: A Practical
Guide to Creating Responsive, Scalable Software: Addison-Wesley.2001.

(Uchitel, 2003) Uchitel, S., Kramer, J. & Magee, J. Behaviour Model Elaboration
Using Partial Labelled Transition Systems. Proceedings o f the 9th European
software engineering conference held jointly with l lth A C M SIGSOFT
international symposium on Foundations of software engineering Helsinki,
F inland.2003:19-27.

(Williams, 2002a) Williams, L. G. & Smith, C. U. Pasa: An Architectural Approach
to Fixing Software Performance Problems. In: Proc. of Int. Conference of the
Computer Measurement Group, Reno, USA.2002a.

(Williams, 2002b) Williams, L. G. & Smith, C. U. Pasa: A Method for the
Performance Assessment of Software Architecture. In: Proc. of the 3rd
Workshop on Software Performance, Rome, Italy.2002b.

(Zhang, 2001) Zhang, B., Ding, K. & Li, J. An Xml-Message Based Architecture
Description Language and Architectural Mismatch Checking, Proceedings of
the 25th International Computer Software and Applications Conference on
/nvigorating Software Development (COMPSAC 2001), Beijing, China. 2001:
561- 566.

Flexible Software Architecture

So far, we assume that every software system contains architecture information,
representing the high level structures, behaviors and other issues related to them.
When a sys tem has been built, it is a common belief that its architecture will keep
stable or only very small parts of it will get modified. However, current software
does not stay so tame. Under various factors, they have to response with the
changes in the architecture level, and in the perspective of marketing, which should

not beget too much overhead.
In this concern, the term "Flexible Software Architecture" (FSA) emerges to

indicate a kind of architecture that enables changes during runtime under context' s
mutation and further a series of methods to analyze and validate the change cases.
FSA embraces, rather than resists, the requirements expecting changes such as
addition and removal of components and reconfigurations of software elements. Two
aspects of issues are involved in architecture's flexibility. The first one is
architecture's dynamism, which means an architecture allowing occurrences of
changes; another one is the stimuli that trigger the change of architecture, such as
environment awareness or users' instructions.

Performing design in the architecture level is difficult and complex where you
have to take trade-off among the interdependent or conflict requirements. Performing
design of flexible architecture is even harder, which forces you to consider software
as a piece of sponge, rather than a rigid wood cube. In this way, you may want to
avoid the risks incurred by flexibility or hate to deal with the similar decision-
making to the change again and again. In this chapter, we discuss FSA, including its
motivations and existent solutions and experiences. We will show how architecture
researchers handle this problem with different ideas and skills. After understanding
them, people will know that the flexibility is absolutely not changes out of control,
but actions under monitoring and validation.

8 . 1 What Is Flexibility for

Software development is a business. Although requirement collecting, designing,

8 Flexible Software Architecture 275

programming, testing, maintenance or the like seems everything development should
do, all of them do not concern the ultimate target of why these actions have to be
done. In most cases, commercial benefit is the target. Today, more and more
economic activities rely on software system in achieving their business goals.
However, this environment is capricious, which must be reflected in the support
software, otherwise software will lose its compatibility and meaning of existence.

Much effort has been paid to dealing with this issue. Extensibility currently
becomes one of the most important quality attributes in software development area,
although concentrating on it too much will draw overhead in performance.
Developers of operating systems may hope they can be easily migrated to various
hardware platforms; developers of applications may hope they should be easy to
add some new features or language supports with less effort; developers of service
provider server may hope those services can be customized to fit for customers '
needs. Those are all the examples of changes, more precisely, in the level of program
construction. Some design patterns focus on them, such as Factory, Mediator, or
Visitor. In this case, you can follow the original design, and add, delete or modify
some elements, rebuild, test and finally release a new edition that satisfies your
needs.

But this is not flexibility in that the changes are achieved by programmers.
Software can change until it is first shut down and then keep sleep during
modification, just like a person who takes the surgery operation. What we want is
the change that software achieves by itself, similar to the process of skin 's
becoming darker under insolation. In this kind of change, designers and programmers
prepare something necessary and start the software, which can handle some change
requirement s automatically.

Maybe you believe that a good preference setting will work well in this case.
Indeed, a comprehensive setting gives the user freedom to fine tune the application.
The large scale systems such as Microsoft Visual Studio or Eclipse have hundreds
of setting items. Essentially, they are a batch of switches of features, whose changes
only affect appearance of build-in functions. But from Chapter 7, we should aware
that software systems' quality attributes are decided by their runtime architecture.
In some situations, we need to change architecture to improve performance,
availability or add components bringing about new functions. Although by changes
of program construction, architecture canbe changed, sometimes it is intolerable. In
large distributed continuous running systems, like telephone switching systems,
banking systems, mobile systems, the offline status is undesirable for their high
availability, where FSA is very useful.

There is another benefit of FSA prior to the traditional architecture. That is the
separation of codes for business and for architecture adaptation. The adaptation
part of FSA is common to many applications which means it can be abstracted and
implemented as a utility. The style of" mixture of business and architecture
adaptation cannot be understood and analyzed easily. Practice tells us excessive " i f
else" statements, in more cases, incur the consequence of chaos. In the contrary, the

276 Software Architecture

separated adaptation part makes changes and validation easier, while facilitating

reuse.
At last, a side effect of FSA is it explicitly keeps the architecture information

which maintains the synchronization with the real global perspectives on the whole
sy stem. This is a common realization of FSA, which on the one hand avoids trouble
of synchronizing manually or extracting architecture from source codes (a normal
process before extending a legacy system); on the other hand makes the runtime
change convenient because a sequence of complex actions contributing to changes has

the foundat ion t o coordinate.
Here are two examples of applying FSA. The mobile middleware encounters the

conflict among heterogeneity and limit computation and storage resource. To enable
as more services as possible, mobile middleware has to access different networking
and gets service descriptor by different protocols. The desktop middleware handles
this by installing every possibly used components, which mobile device cannot
afford. FSA allows to dynamically load and activate the necessary components that
are necessary under a specific context while removing the ones temporarily useless.
That is not easy because the running applications may depend on the components
to be removed. An invasive removal will make the whole runtime crush. FSA should
avoid this case by validation before changing the architecture.

The other example is a shared file system. This system makes use of several
interconnected computers, and distributes files among them. Its architecture is
flexible to dynamically adjust the amount of occupancy in each computer,
concerning their free space and access pattern. The location of administrator
component and file fragments varies during its running to provide the most rapid
response to the users who frequently access the file. When some involved
computers are shut down, the system carries the fragments on them to the available
ones. In this case, the shared file system has to record the physical location and
status of its architectural elements.

Looking around, you may find there have been lots of systems capable of self-
adaptive, self-healing or plug-ins loading. They may be developed under a strict
validation in various ad-hoc methods to pretend potential risks that could lead to
errors of disasters, or even constructed directly employing only simple tests or
guesses. We often imagine the future of software, which is an entity alive and able
to response under changed context by self protecting, generating and at last evolving.
But current methods and technologies still stay in an initial state. They need
refinement and.improvement. FSA is an ideal Start point to change this situation and

even realize the dream.

8 . 2 Dynamic Software Architecture

So what is dynamic software architecture exactly? If we simplify the term
"software architecture" to the collection of runtime components, connectors and

8 Flexible Software Architecture 277

their relationships, we can change each of them, or any of their combinations. They
are not exiguous in current software area, especially in the distributed systems
which can be configured. Some researchers prefer the term "dynamic configuration"
to indicate the runtime change capability of the field above. (Cuesta, 2001) separates
the dynamism into three levels by analyzing their implicit distinction. The first level
is called "interactive dynamism", requiring the dynamic communication of data in a
fixed structure; the second level, "structural dynamism", allows the modification of
structures, usually expressed as the creation and removal of component and
connector instances, which seems prevalent in most current researches and real
projects; the third level, named "architectural dynamism" is able to describe the
change of architecture' s infrastructure upon which all the instance elements are
defined, such as component or connector types. Cuesta insists that only the third
level deserves the term "dynamic architecture".

~rchitectural Dynamism_ LeVel 3

~Structural Dynamism~ Level 2

~nteractive Dynamism~- Level 1

Fig. 8.1 Dynamism of three levels

(Bradbury, 2004) gives a more general definition: " dynamic software
architectures modify their architecture and enact the modifications during the
system's execution". If elements in the architecture can be modified during runtime
guided the predefined rules, it is considered as dynamic architecture. However, he
extrudes the actions of initialization, selection and assessment of the changes
without the assistance of external users, and delrmes the term "self-managing
software architecture".

We tend to define dynamic architecture as " the architecture capable of
performing changes in some elements of it under control and validation during
runtime". We believe any elements' runtime changes should be categorized into the
range of dynamic architecture. And at the same time, the arbitrary changes are
meaningless because correctness cannot be guaranteed. During the change, validation
by some methods, such as formal checking, is absolutely necessary for dynamic
architecture. After all, we do not want software to execute to the state of chaos.

Dynamic software architecture is not a framework, a set of primitives or a
theory with which we can model or identify roles in it. Just like design patterns, it
is actually a general idea to drive the design if dynamism is identified as a required
function. To achieve dynamism of different levels under different other conditions
and constraints, the solutions are different. That is why there are lots of models and
description infrastructures that have been published so far. We categorize
mainstream trend of research as perspectives, and introduce the notable examples

278 Software Architecture

delegating them. Three perspectives are identified. They are the behavior
perspective, which describes the behaviors leading to dynamism with process
algebra; the reflection perspective, which models the meta-information explicitly
upon reflection theory; and the coordination perspective, which focuses on the
separation of computing and coordination part and handle interactions with
coordination primitives. For each of them, we start from the general idea of a
perspective, then introduce the classic formal method of it, and finally depict an
ADL or model based on that. Although they overlap to some extent, such as that
reflection in fact borrows the mind of coordination, and behavior-centered
description may use the paradigm introduced by reflection and coordination, they
have their own features and benefits.

There is still another kind of perspective that models dynamism with graph-base
approach. It is a rather natural way to specify sys tem's reconfiguration by setting
rules of graph rewriting. However, it is inherently weak in describing behaviors. And
they will become hard to manipulate and inspect when s y s t e m ' s structure gets
complicated, which pays off its benefit of intuition. Even this, it has been adopted
in numerous projects since its simplicity. For the same reason, we do not want to
spend a lot of time to introduce them. Readers who are interested in it can read
materials about CHAM approach (Wermelinger, 1998), Hirsh et al. approach
(Hirsch, 1998), CommUnity approach (Wermelinger, 2001), Taentzer et al. approach
(Taentzer, 1998) and M6tayer approach (M6tayer, 1998).

8 . 2 . 1 n-ADL: A Behavior Perspective

Generally, architecture can be split into two parts of descriptions: structures-related
and behavior-related. In dynamic software architecture, the focus has been placed on
the behaviors that change its structures during runtime. Thereby, the key point is to
find formal methods describing those behaviors, facilitating describing and validating.
Parts of those formal foundations are identified as "process algebra", which has an
intrinsic modular nature which makes it particularly useful for the description of
composition structures, especially in the runtime viewpoint. In it, behaviors that
execute in a sequential style are abstracted as a process. Thus communications of
behaviors are simplified as composition of processes.

In the static architecture period, it was a common methodology to extend or
modify a kind of process algebra to fit for the needs of architecture description.
WRIGHT, which was mentioned in Chapter 4, is a case, which borrows the idea of
CSP. Dynamic WRIGHT (Allen, 1998) is a progressive attempt to port WRIGHT
to dynamic architecture. However, CSP itself does not support dynamic behavior.
To complement this, Dynamic WRIGHT introduces special operations for control
and an abstract entity named "configuror", which are responsible of altering
configuration of the system during execution. They are essentially static, or at most
able to describe parallel systems that communicate with each other.

For dynamic architecture, "process" should be able to perform operations on its
host, normally a component or a connector, which includes changing their states of

8 Flexible Software Architecture 279

lives (add, activate, deactivate, remove, and so on), resetting their relationships with
others (bind, unbind and so on) or evolving the internal structures of them. One of
the most popular formal languages currently is n-calculus (Sangiorgi, 2001), a
process algebra that is designed to model mobile system, which naturally own
dynamic software architecture.

n-calculus separates mobility into two categories: the first one is link mobility,
meaning that the changes of link relationships in the abstract space of processes. In
n-calculus, links themselves can be transferred during other links, which may trigger
an arbitrary change of s y s t e m ' s configuration. For example, when a mobile phone
that has created a connection with a fixed server moves around, which dynamically
changes this reference, other mobile terminals can acquire this reference during
runtime in the form of return result of such as an update method, and thus they can
also correctly connect with that server at any time. n-calculus abstracts this kind of
mobility as two basic entities, (link) names and processes, where processes Can
interact through links that share the identical names. Names are allowed to be sent
or received during interaction. By getting a name, a process can interact with other
processes that it is completely unaware of. This can be easily used for modeling
share, a critical abstraction discussed more by coordination perspect iveas explained
in the Section 8.2.3.

Another kind of mobility is the movement of process itself in the abstract space.
It is an abstraction of code mobility that some components leave their birth place
and get executed in some other hosts, helped by networking or the like. In this way,
a device, such as a mobile phone, a laptop computer or an embedded device, can gain
new functionalities. A kind of high level mobility, termed as "mobile agent"

(Fuggetta, 1998), is a typical case where a whole computational component is moved
among a networking and executes according to instructions or its internal states
affected by environment on an arbitrary remote site. n-calculus examines a sub-
theory based on process passing, called "Higher-Order n-calculus" (calculus based
on name passing mentioned in the first kind of mobility is termed as "First-Order
calculus").

n-calculus does not explicitly model locations. You cannot find any entity in rt-
calculus that is designed to be mapped to location information. This, however,
should be concerned as a freedom rather than a drawback. Through name passing and
process passing, one can easily refine it with the right additional notations in the
right abstract level to meet o n e ' s particular needs, which maybe, for instance,
require exchange of links, exchange of processes and any combination of them.
Similarly, the link in n-calculus is also a general term that can be construed very
broadly. For instance one can reify link as a physical network link in a distributed
system, a logical channel for data transferring among components or a reference to
use an object. Also, names of links can be naturally adopted as location identifiers
when they are critical for design.

This book will not introduce the detailed syntax and semantics of n-calculus. For
this target, we recommend (Sangiorgi, 2001) or (Parrow, 2001). But we will simply

280 Software Architecture

list its basic syntax for enlightening. The v processes and the summations are given

in the following grammar.
V : : = M [V [V ' [v z V [! V
M: : =O [~r. P [M ~ M '

More particularly, the grammar indicates notation system of rt-calculus:

�9 0 is inaction, a process doing nothing, which is often used as the end of

expression.
�9 zr is pref'Lx representing actions which will be mentioned in detail later. When

a prefix is finished, the subsequent process proceeds continuously.

�9 + (Summation Operator) means selection. If two processes P and P '

connected with this operator, only one of them will be exercised, leaving

another one lost.
�9 [(Parallel Composition Operator) indicates independent execution in parallel.

P [P ' means these two processes perform their capabilities respectively,

with possible communication by shared names.
�9 v (Restriction Operator) limits the scope of name. vzP indicates that the

name z is restricted locally in the process P , which cannot communicate with

its environment through z, but can use z within P.
�9 ! (Replication Operator) is a short term equivalent to an infinite processes

connected by parallel composition operator, which means a process can be

executed repeatedly.
Processes evolve by performing actions, which are expressed via prefixes, termed

as ~r, falling into four categories"

~r: : -s I x(~)I ~1 Eboolean]~
�9 x y (O u t p u t Prefix) means "via the name x send the name y"
�9 x (z) (Input Prefix) means "via the name x receive the name z"

�9 r (Unobservable Prefix) represents a invisible action to its subsequent
process. For example, r. P will evolve to P without any interaction with

environment.
�9 [- boolean-] ~r (Conditional Prefix) performs the prefix denoted as zr when the

boolean expression holds, which normally contains two kinds. The first one is

match condition, in the form of [a: = y]; while the second one is mismatch

condition, in the form of [x 4: y].
Take the mobile phone mentioned earlier in this section for example. There is a

fixed server S, an intermediate mobile phone A and another phone B that connects

to S through A, as drawn in Fig~8.2. It can be expressed as:
-ba. A [b (c) . (cd-+-c(e)). B

where on the one side A sends the link a through B to the outside while on the
other side B gets a link through b and either sends d or gets e via that link. (We

assume that d is a link accessing some data from B and e is a link accessing some
data from S, both of which are not illustrated in the figure). By combining them, a
is essentially acquired by B via which B and S can interact with each other. The
result sys tem is expressed as:

8 Flexible Software Architecture 281

A[(ad-%a(e)). B
n-calculus also introduces concept of type.

An assignment of a type to a name can be
written in the form of a : T, where a is a
name, termed "name of the assignment", and T
is a type, termed " t y p e of the assignment".
Three kinds of types are introduced by n-
calculus, that is, value type, link type and
behavior type. Value types can be assigned to
the value objects that can be exchanged via
links. Link types can be assigned to the links
through which communications are taken. One
link type can be defined as the value types

Fig. 8.2 ~:-Calculus example

permitted to be exchanged in the link. And finally, behavior types can be assigned to
processes. Behavior types are the basis of Higher-Order n-calculus. Links, value
objects and processes can be unified as names, based on which a type environment
is defined: a finite set of assignments of types to names, where all the names of
assignments are distinct.

Higher-Order n-calculus is an extension of typed n-calculus by involving
process passing, The objects transmitted in interactions can be a typed process. To
achieve this, the Higher-Order output prefix form is:

a(P:T) . Q
which means "via the name a send the process P and then continue execution as
Q". And the Higher-Order input prefix form is"

a(X: T). Q
which means "via the name a receive the process X and then continue execution as
Q" . In both prefixes, the type parameter T may be omitted if they are not
important. After the receive action, Q may employ the process represented by X,
and a replace will occur. Follow the example above, if the server S wants A to send
data to B by transmitting a mobile agent, while A can do something else in parallel.
The interaction can be expressed as"

a(be. O). S[a(X) . (X l b (u)) . A
In this interaction, S sends an agent capable of sending e via b. In parallel, A

receives this agent by shared name a and this agent is activated in parallel with the
job of A itself (b (u)) . Finally, it can be transferred to"

S[(be[b(u)) .A
Several ADLs adopts n-calculus as theft formalism foundation, including

DARWIN (Magee, 1995), n-space (Chaudet, 2001), Con Moto (Gruhn, 2004;
Clemens, 2006) and n-ADL (Oquendo, 2004a). Among them, n-ADL is a typical
refinement of Higher-Order n-calculus, especially for those requiring dynamism and
mobility. In this concern, we give a more detailed introduction to it.

n-ADL, or called ArchWare ADL, models the system with a runtime viewpoint,
which is comprised of components, connectors as well as behavior, any of which

282 Software Architecture

may evolve over time. Components and connectors are both represented as a set of
external ports and internal behaviors, but different in architectural roles: components
are the abstraction of software elements performing certain computation or
maintaining the access of data; and connectors ' role is communication channel
between architectural elements. Ports are described as a set of connections attached
by communication protocols. Connection is the minimal unit via which a certain
kind of object can be transmitted. Three modes of connection can be set: output
(objects can only be sent), input (objects can only be received) and input-output
(bidirectional exchange of data is allowed). One port can contain an arbitrary number
of connections. It can be viewed as the counterpart of notation "link" in n-calculus.
n-ADL does not allow a direct connection between two components. In order to
take communication, components have to put a connector between them. The model
established by n-ADL is shown in Fig.8.3.

behaviors

~ o m p o ~ _ . 0nen;

�9

connections port

Fig. 8.3 Architecture model established by ~ADL

Components and connectors can exhibit their internal structures by composition
mechanism. Noticeably, composing is a kind of behavior that is able to execute
during runtime, thus allowing the dynamic creation of new components. The
composite components or connectors hold external ports as well as internal
architectural elements that may be attached with ports too. Therefore, just as the
name in n-calculus, some ports may be set as restricted, indicating that those ports
can only be used internally but not as the interface to outside environment. More
particularly, the architectures of a system are also composite elements. An
architecture can contain a sub-architecture. In n-ADL, architectures, components
and connectors are formally specified in terms of typed abstractions over behaviors.

The formal system of n-ADL is defined in layer style:

�9 Base Layer (n-ADL~): This layer defines the fundamental language constructs
for describing typed behaviors. More particularly, it defines void data type,
connection, abstraction, and finally the basic behavior type Behavior.

�9 First-Order Layer (n-ADLvo): This layer extends n-ADLB by defining
concrete base types (Natural, Integer, String, Any), constructed types
constructors (tuple, view, location, ...) and collectioii t3~pes constructors

8 Flexible Software Architecture 283

(sequence, set and bag). Connection mobility is also given birth here.
�9 Higher-Order Layer (Tt-ADLHo): This layer extends 7t-ADLFo with full first-

class constructs definitions including behavior mobility (process mobility of
Higher-Order 7t-calculus).

DataConver tor

~ ~ behavior) ~1~ out

incoming "~Guard o u t i n g

/ [protocol]

Fig. 8.4 Structure of DataConvertor

In Fig.8.5, we specify a single component DataConverter that converts input
arbitrary data to student information in rt-ADL, which is illustrated in Fig.8.4. It'
first defines five value types, three of which are alias of base value types and two
of which are constructed by tuple. After that two ports are specified. The port
incoming is responsible of accepting entries of student information through shared
input connection in. The port outgoing is used to send separated information via
out. The behavior segment describes what DataConverter will do: it accepts the
value object of type StudentInfo, converts it by projection operation into three
fields (id, name and info), and finally sends a simplified object containing only
student 's id and name. The protocol enforces that before receiving the next entry,
this component has to send the simplified entry first. For complete description of
7t-ADL syntax, one can read (Oquendo, 2003).

component DataConverter is abstraction() {

type ID is Natural. type Name is String. type Info is Any.

type StudentInfoEntry is tuple~ID, Name, Info3.

type SimpleStudentInfoEntry is tuple~ID, Name3.
port incoming is{ connection in is in(Entry) }.

port outgoing is{connection out is out(SimpleStudentInfoEntry)}.
behavior is {

via incoming. �9 in receive entry: StudentInfoEntry.

project entry as id, name, info.

via outgoing: :out send tuple(id, name)
>

} assuming {

protocol is{ (via incoming: : in receive any. true

via outgoing: : out send any) * }
}

Fig. 8.5 A sample specification of a component m ~ADL

~-ADL allows to compose several components and connectors. The key word

compose is equivalent to the parallel composition operator (I) in rt-calculus. All
the components and connectors involved in the composition execute in parallel and
interact via shared connections. Normally, the connections with the same name are
identical. But for decoupling reasons, there is no need to define the global accessible

284 Software Architecture

connections before assembling the whole system. Thereby, n-ADL introduces
connection unification statement to handle this issue. Additionally, in the behavior
specification of n-ADL composition can be adopted, which enables the dynamic
creation of components, connectors and the connection unification relationships
among them. The code segment of Fig,8.6 shows this. If the value x is greater than
1, a Client component, a Server component and a Channel connector are created,
following which their configuration is established. If this behavior is executed for
many times, a collection of instances of those architectural elements may be created
and activated. Similarly, n-ADL also contains a construct decompose to dispose the
sub-system.

Just as the First-Order and High-Order n-calculus, n-ADL allows transmission
of connections and behaviors, facilitating modeling mobile systems. For this, n-ADL
employs the behavior type Behavior and connection type, represented as
"connection_mode[type]", where connection_mode can be in, out, and inout, and
type specifies the allowable types whose instances can be transmitted.

behavior is {

if x>l

then compose{ c is Client() and s is Server() and a ch is Channel()}

where {

c : : outClient unifies ch. : inChannel

and s:: inServer unifies ch: :outChannel

}

else

done

Fig. 8 .6 Dynamic creation of a sub-C/S system

n-ADL is a well formed language capable of specifying static, conventional
dynamic and mobile software architectures. Besides its formal basis, it also provides
a graphical notation defined as a UML profile, improving the convenience of its
applying in practice. Meanwhile, it is an executable language that can be used for
simulation during design phase. Another more elaborate ADL, called ArchWare C&C
ADL, has been proposed beyond n-ADL (Cimpan, 2005), which focuses on the
defining of dynamic software architecture with component, connector and style.

8 . 2 . 2 MARMOL: A Reflection Perspective

One intuitive solution to the dynamic architecture is to implement architecture
reflection. Reflection means the capability of a system to reason and act upon itself
(Maes, 1987). Just like seeing yourself in the mirror and combing your hair, a
system employing reflection contains an explicit model representing the system
itself, which allows users' access or modification. A change to the model will finally
reflected to the system itself in whichwhat will be done depends on what the model
represents. And the converse case holds too.

8 Flexible Software Architecture 285

Formally, reflection model is a layer-based model, in which each upper layer
serves as a "meta-system" to the base one, called "base-system". For each meta-
base system pair, the meta-system describes how the system perceives or modifies
itself, while the base-system describes the normal operations and structures. A
system is said to be reflective when it acts as its own meta-system. In reflection
model, two operations are defined. An operation that shifts up from the base to
meta-level is named "reification"; conversely, the operation shifting down from the
meta to base-level which means the modification in the meta-level is achieved in the
base-system is called "reflection". In some publications, the meta-and base-level
should be identified relatively because reflection model does not limit the number of
reflective layers. However, in the practice use, less than three layers of reflection are

emp loy ed.
In the object-oriented programming area, reflection has emerged for several years.

A platform such as Java or Net archives the information including class definitions,
method signatures, field definitions and their interrelationships, and binds them with
the executive code. Therefore, any objects are self-explanative. That endows
programmers the power of identifying and manipulating those objects instantiating
from unknown types. Besides, programmers can program dynamically. It is possible
by programming reflection to generate new code for types or methods during
runtime, which is a foundation of program self-generating, The open source java
framework Hibernate (http ://www. hibernate, org) and Spring (http ://www.
springframework.org) employ reflection and thus achieve the success of improving
agile development. Here is a segrnent of code using reflection, shown in Fig.8.7. This
program analyzes the class definition whose name is specif iedby the program's
first argument. All the methods defined in that class are dumped and their signatures
are printed on the output console.

import java. lang. reflect. * ;

public class MethodsDumper {

public static void main(String args~3) {

try {

Class c -- Class. forName(args~O3) ;

Method m[3 ~- c. getDeclaredMethods() ;

for (int i = O; i < m. length; i~--~)

System. out. println(m[i~. toString()) ;

} catch(Throwable e) {

System. err. println(e) ;

>

Fig. 8 . 7 Java code segment using reflection

Nevertheless, object-oriented programming reflection only maintains the
information in the code level. Those for architecture are not embodied explicitly.
Especially, this kind of reflection essentially depends on the process of compilation,
which involves no runtime architecture-related issues at all. Architectural reflection,

286 Software Architecture

however, improves this point by keeping the runtime architecture when system is in
execution. The architectural reflective system knows what its structures looks like,
the active component and connector instances or even the infrastructure including
various types. What ' s more, unlike the code level reflection, architectural reflection
is given birth to be modified. Self-healing (Schmerl, 2002), self-adaptive (Oreizy,
1999) and self-organizing systems (Georgiadis, 2002) will reason architecture
candidates and choose the best one according to situation and selection strategies.

Architecture]
Model 1 Architecture

Change

AMh~]

Base-Level

Meta Level

runtime

Fig. 8.8 Architecture change under architectural reflection

Fig.8.8 illustrates an example of change based on architectural reffection. The
system is separated into two parts: the meta-level and the base-level. The meta-level
maintains the runtime architecture model during execution, and the base-level is the
part that implements the functions or provides services to users, where the implicit
architecture is held. In the architecture model, the squares mean the component
nodes used fore representing and validating, each of which corresponds to the real
one in the base-level, the component instances, which are shown in octagon. The
difference between component instances in reality and nodes in model means that
the architecture model ignores those architecture-unrelated details. At some time the
change occurs, wherever the source comes, leading to the layout transference of
structures. Before and after the change, the structures in the both levels have to
keep synchronous.

MARMOL (Meta ARchitectural MOdeL) (Cuesta, 2001) is the first formal
model trying to formalize the intuition of combining reflection and software
architecture. The main idea of MARMOL is to introduce multiple levels of
description in architectural specification and represent the software architecture
with the concepts from reflection. Notably, MARMOL is neither a model for a
specific problem or project, nor an architectural style or pattern, but for
architecture specification. In MARMOL, primitives for describing dynamic software
architecture are defined. In MARMOL, the following assumptions hold:

8 Flexible Software Architecture 287

�9 The number of met a- levels is unlimited. The architecture described by
M A R M O L is composed at least of a meta- and base-system. But
M A R M O L allows a multiple layers style systems, in which each adjacent
two layers form the meta-base pair. The total layers can be infinite.

�9 The relationship between any meta-base pair can be arbitrary. M A R M O L
does not suppose anything about it. This assumption means that the
interpretation or conversion mechanisms of a meta-base pair are the
irrespective issues of MARMOL. They should be defined in the sub-models
used in a single layer. In the extreme case, the meta- and base-system in a
pair can be unrelated with each other at all.

�9 Each component in the base-level (relatively) has exactly one associated
"meta-space", which logically hold all the meta-information about this
component. Meta-space is composed of meta-components, meta-level
components and their combination. M eta-component maintains a direct
reflection with a base-component, which is termed the " re fe ren t " or
"avatar" of it; meta-level components are the ones responsible handling the
meta-information which are placed in the met a- level. A directional causal
connection exists between the meta-space and its base-component, termed
"reification" from the base to meta, and "reflection" from meta to base.

�9 Architectural component types can be reified as "meta-components", an idea
similar to the Class class in Java. Expressing dynamism can benefit from this
point.

Obviously, MARM OL is a perspective focusing on the dynamism brought in by
reflection. It can be used collaboratively with other ADLs, which, for example,
facilitates the description of one single layer as a composite component. However,
M A R M O L does not depend on any particular description methods. In this way,
M A R M O L makes possible for an ADL to deal with dynamic concerns using just
the languages constructs designed for static structures or interactions. It
concentrates on reflection and its effects to a certain concrete software architecture,
and formalizes the relationships in the model. M A R M O L will not inspect the
internal structures within a layer. This is an entirely different issues that are not in
M ARM OL' s goals.

M A R M O L comes from the abstraction of current existent systems employing
implicit reflection, that is, they use reflection without awareness of it. Those
mechanisms allow dynamic capabilities, such as external control, changeable
components Or changeable connectors, hire the meta-model more or less.

Based and extended on MARMOL, a dynamic ADL, Pilar (Cuesta, 2001; 2005)
has been proposed and refined to describe reflective dynamic software, representing
a specialized edition of MARMOL. Within Pilaf, there is really just one kind of
element in the top level: component, a basic software unit composed of a set of
interfaces or sub-components. Four parts are defined as a component 's
specification, interfaces, configurations, reifications and constraints, where the first

ones are common among various ADLs, but the third part def'mes the reflective

288 Software Architecture

structure. The last part, constraints, different from the notations only identical in
appearance defined in other architecture models or languages, provides the rules
comprising dynamism. The Pilar model contains a reflective tower, just as
MARMOL, where the elements that are controlled by reflection are said to stand in
the base-level, and the elements which controls stays in the meta-level. A base-level
components is known as an avatar. The relationship between an avatar and one of
its corresponding meta-components is named as a "reification link", through which
the operations reification (shifts up) and reflection (shifts down) can be performed.
Of course, a meta-component can repeat another reification link with a meta-meta-
component in the upper layer which allows an infinite number of meta-levels. An
illustrative figure of two-tier reflection is shown in Fig.8.9. There are four base-
components, three of which are linked with their meta-counterparts in the meta-
level. It is the meta-components that control the dynamism of components in the

base-level.

Fig. 8.9 Reflection model of Pilar

There are two notations common in other ADLs are unified with meta-level
abstraction in Pilar. The first one is type-instance relationship, a feature facilitating
the reuse of architectural elements. In Pilar, types can be considered as meta-
component managing their own instances through reification links, which is termed
"reified t ypes" . Another one is the connector. In Pilar, only connections are
concerned by reification. They are handled ifi the way same to the components
owning reified types, but only different in their constraints. In this way, they can
acquire a complex behavior, recovering all the power of original connectors. In other
words, Pilar has meta-level connectors.

We borrow an example from (Cuesta, 2005) to illustrate the representation
mechanism of Pilar, shown in Fig.8.10. This specification defines three components,
related by reification links. The syntax used here is specified in Fig,8.11. First of all,
a component called "Multiplier" is defined,, with two ports A and B. From the
constraints, its behavior is self-explanative: it reads any value got by A and sends
the doubled value through B. Here the question mark (.9) means input while
exclamation mark (!) refers to output. The key word \ rep indicates the behavior is
repeated each time when A receives something, analogous to the replication
construct in the n-calculus.

8 Flexible Software Architecture 289

\component Multiplier (
(port A I port B)
\constraint (\rep(A.9 (x) ; B! (2x)))

)

\component Logger (
(port C)
\constraint(\rep(\when avatar. A.9 (z)

(c! (z))))
)

\component LoggedMultiplier (
\config (mul : Multiplier)
\reify (mul: Logger)

)

Fig. 8.10 A partial example of Pilar

\component name [<parameters>3 (
{[\ interface]

(interface definitions) }
[\ conf ig (

{ instances declarations} I
[\bind (

{ binding declarations })

)3
{ \reify explicit reification}
[\constraint (

{ dynamic constraint})

Fig. 8.11 Pilar syntax

The second component is Logger, tending to log something when conditions hold.
It def'mes a monitor with the guard key word, as well as access to its reified base-
component through the keyword avatar. When Logger's avatar detects an input
from port A, it performs the log actions that send the input from port C; otherwise
the avatar will be affected by Logger. To enable the log behavior, the avatar should
guarantee a port named A defined.

Then the component LoggedMultiplier is defined in a composite form. A
component instance mul of type Multiplier is declared. What ' s more, it is reified to
the meta-component Logger. Hence, the behaviors defmed in the Logger can be
reflected to this instance. The integrated effect of mul is that When it receives a
value from port A it outputs the doubled value through port B and sends the copy
of that value by port C as log,

Obviously this specification is not complete because it needs other components
to link with port A , B and C. And it clearly illustrates the reflective structures
depicted above. However this case does not involve the dynamism, a topic of
following, Pilar provides several primitives by which architecture can be modified
during runtime. Here is brief table that lists the operations related to dynamic
architecture. These operands enable the creation, deletion of components and
reification links, through which it is possible to dynamically alter the structures and

290 Software Architecture

behaviors of components in a certain level of reflective tower. Because the infmity
of reflective tower, the structure of a system, the component, and even the
component type may be modified during runtime.

Table 8 .1 Dynamism Related Operands in Pilar

Operand Description

\ new (c: T) Creation of a new entity c of type T

\ del c Deletion of any entity c

\ alias p as q Scope extrusion of port p, possibly renamed

\ hide p Hiding of port p

avatar Reference to the avatar to the current meta-component

self Reference to the meta-component itself

\ reify R(c : rn) Creation of reification link between the avatar c to a meta-entity rn

\ findr R(c :m) Search for a reification link between c and m

\ nullr R Judge whether the R is not a reificati0n link

With them we create a complete sample specification of a database access
control sys tem in Pilaf. In Fig.8.10 is the specification:

\component DB (
(port data)

)
\component Server (

(port data_source)
)
\component DataChannel (

(port input I port output)
\constraint (\ reify R (avatar: CommonLink (avatar. input I avatar, output) ;

output? (W) ;\del R;\reify S (avatar:CachedLink(avatar. input avatar, output))
)
\component CommonLink (

(port input I port output)
\constraint (\rep (avatar. input? (X) ; avatar, output! (X))

)
\component CachedLink (

(port input I port output)
\ config (ca: Cache I comml: CommonLink (c. input comml, output) I comm2:

CommonLink(comm2. input c. output))
)
\component Cache (

(port input port output)
\constraint { ignore here}

)
\component System (

\conf ig (d : DB s : Server I c : DataChannel (d. data s. data_source))
)

Fig. 8 .12 A Specification of Database Access Control System

To make the change process more clear, we visualize it in the Fig,8.13. Most of
the specification is self-explanative except the components DataChannel,

8 Flexible Software Architecture 291

CommonLink and CachedLink. Therefore we simplify those reified types in the
format of italic rather than to place them in the meta-level in order to avoid the
mess. Another simplification is that we draw all the meta-components actually
staying in the different met a- levels in a single level. At last, the solid lines mean
conventional bind relationships while the dash-curved lines indicate reification links.

Initially we define the system with three linked components: d (D B instance), s
(Server instance) and c (DataChannel instance). From the constraint of DataChannel
c is reified to the meta-component CommonLink, which simply forwards what is
received from the input port through the output port, detailed in the constraint of
CommonLink. When a signal " W " is detected by c, which means a warning
generated from s in the case such as access overload (we omit the specification of
generation of W), the previous reification of c to CommonLink is destroyed, and a
new one to CachedLink is established, during which a component ca, instance of
Cache, is created and linked to two additional CommonLink instances comml and
comm2. You can see that this is not a simply creation, deletion or replacement of
components but a combined modification to the architecture. The final result is a
cache is introduced and improves the server's performance. Iommonq 1

L i n k) (L ink

\

Z-
i n p U~ D aCta " ~ t p u t

I anne,J I -
data | l d a t a _source

I x; DB Serve

When"W"signal
arrives

data

Come'mort (cached~
Link) ~Link J

. m , t a:tev ,

base-level

l n p u t ~ i i [i u t I

r y e

Fig. 8.13 The change process of database access control system

Authors of Pilar believe that "dynamism based on the meta-level" is a very
useful concept to improve the insight of dynamic software architecture, which can
be used to unify other methods of dynamic facilities. The primitives of Pilaf come
from n-calculus, which changes only in the express form, rather than the ad-hoc
criteria. Wha t ' s more, as an extended MARMOL, it is feasible to employ other
formal description, such as CCS or y-calculus. This guarantees its power of
validation and analysis.

8 . 2 . 3 L I M E : A C o o r d i n a t i o n Perspect ive

With the evolution of distributed and parallel systems, the Coordination Model
(CM) was developed to handle the massive parallel system. It provides a framework
which enhances modularity, reuse of existent components, portability and language
interoperability. Coordination Theory has been generically defined as " the

292 Software Architecture

management of dependencies between activities" (Malone, 1994) or "the process of
building programs by gluing together active pieces" in the programming area
(Gelemter, 1992). Lots of Coordination Languages (CL) have been proposed which
are different in their special concerns and features.

So what is the relationship between CM and dynamic software architecture?
Massive parallel systems are normally distributed among logic nodes, such as
threads, processes, processors or hosts. Their interactions, behaviors are natively
dynamic because any part in the system does not own the capability of overseeing
the global status of system before execution. They cannot stop some nodes' crash
or new components ~ joining. Besides, the communications involve code mobility
that enables the separation between the location of some components' execution
and of their initial generation. The needs of dynamic software architecture mostly
are derived from the requirements of flourish of distributed system. CM adopts an
outstanding perspective to abstract the problem. Any branch of CM has something
in common. That is, they consider the system as the combination of two distinct
activities: the actual computing part, in which several processes do the computing
with resource, and the coordination part that manages the communications and
collaboration among computing processes. This provides a paradigm to simplify the
development of distributed and parallel systems with separation. Some notorious
survey about CM in computer science includes (Andreoli, 1996), LNCS Series 1061,
1292, 1594, 1906 and 2315 (Coordination Models and Languages). A comprehensive
discuss of CM and CL is beyond the scope of this book, but we will briefly
introduce Linda, a classic fundamental CM, and then LIME, an extended Linda to fit
for mobile environment.

Linda (Ahuja, 1986; Carriero, 1989) is historically the first CL applied in
computer science, which provides a rather simple mechanism to allow the separation
of computing and coordination parts. In Linda context, a process expecting to
communicating with others can send the data (especially an active process can be
considered as a kind of data, and thus is feasible to be sent) to an abstract shared
"tuple space". Any processes within the range of a single system can read from or
write to the global tuple space through which communications are performed. In
order to make it feasible, each process has a unique identifier. Therefore any process
involving the communication is unnecessary to be alive at the same time or stay in
the fixed p lace, which is termed as a feature of Linda: decoup ling of time and space.
Each tuple is a list of typed parameters, such as < "hello", 0.3, 12> , that holds
the data being communicated. Each item in a tuple is either an "actual" or a
"formal". Actuals are concrete values, such as strings or integers; formals seem
similar to wildcards or templates that can match a series actuals, facilitating the
operations that will be mentioned below. All in all, the tuple space is a multiset of
tuples capable of being accessed concurrently. Model of Linda is shown in Fig,8.14.
For the beginner, there is no need to concern how the global tuple space is realized
because it is an ad-hoc solution. This is why we draw the tuple space with dashed
line.

8 Flexible Software Architecture 293

Legend (q
['] passivetuple / process| (]
m [m [_ . 1 process[

active tuple k,) _~.t-----~1 n |

!] tuple being deleted . _ ~ .in...~_. _ ! j

i "tuple space - - ~[~ . [~ _ ~ ~ [- -] ~ ~ ~ E] ~ E] E -] E] ~

o u t ~ ~ V ~xrd eval -"~

r ~ / ~ f Pr2cess] ~ . ~ f Pr4cess] [SJ [] ' Prices L J Pr3ess

Fig. 8.14 Linda model and operations

Linda defines a set of simple coordination primitives. In particular, out(t) is an
operation to put a passive tuple t to the tuple space, in(t) retrieves a passive tuple
t and removes t from tuple space, rd(t) gets a copy of t from tuple space, but leave
the shared edition unaffected, eval(p) puts an active tuple p, in other word a
process, in the tuple space, which then starts to execute and will turn into a passive
tuple after finishing~ Both in(t) and rd(t) can use formals to allow associative
pattern matching. More particularly the parameter t is a tuple schema that can
match multiple tuples at the same time. For instance, a template tuple < "abc", ?
integer, ? double> will match any tuple that contains three fields, the first of
which is a string "abc", the second is an integer and the last is a decimal, such as <
"abc", 1, 3.24> and < "abc", 12, 4.5> . If the match fails, these two operations
blocks until some eligible tuples are put in by some other processes. Conversely,
ou t (t) and eval (p) are non-blocking operations. But they cannot accept the
parameters containing formals. Several additional operations are added when Linda
get evolved. For example, rdp(t) and inp(t) are non-blocking variants of rd(t) and in
(t) respectively. They will return FALSE when they cannot find the desired tuples.
All these operations are atomic.

Linda is language-neutral; therefore it is possible to implement Linda in the form
of programming library. Fig,8.15 gives an implementation of Dining Philosophers in
C-Linda (Papadopoulos, 1998).

This problem gets a number (such as 5 in the solution) of philosophers to sit
around a table. In front of each of them, there are a plate of food and two forks
placed in his left and right side respectively. To eat, one person has to pick up two
forks next to him and eat. Without any control, it is possible that everyone picks up
one fork on the same side and waits for another one, that is, deadlock occurs. In the
solution above, Linda uses "ticket" to avoid the deadlock. For NUM people, only
(NUM 1) tickets are put into the tuple space which makes sure that there must be
at least one person who can fmish the "eat" action. Therefore, deadlock never

294 Software Architecture

happens. Meanwhile, the maximal concurrent number of "eat" is achieved.

define NUM 5 int main()

void philosopher(int i) {

{ int i;

while(true) for(i ----0; i ~ NUM; i~-q-)
{ {

think() ; out(" fork", i) ;

in(" ticket") ; eval(philosopher(i)) ;

in(" fork", i); if(i < NUM I)

in("fork", (i+ I) % NUM) ; out("ticket") ;

eat() ; }

out("fork", i) ; return O;

out("fork", (i~- I) % NUM) ; }

out(" ticket") ;
/

/
Fig. 8.15 Linda solution of dining philosopher

We can replace the process in the Dining Philosophers program to control a
dynamic architecture. For instance, we implement the function "eat" to activate
component, while "think" to deactivate it. Hence, we can control the lives of
components that are related to each other regulated by the fork rule. Additional,
through changing the value of NUM, we are able to control the number of
components that can be activated. Of course this is only a simplified illustrative
example, but designers may realize more complicated interaction mechanism with
Linda primitives.

During the evolvement of two decades, various variants of Linda have been
prop osed. Bauhaus Linda (Carriero, 1994) unifies tup les and tup le sp aces, tup les
and tuple templates, active and passive tuples. In Bauhaus Linda, the original single
flat tuple space is replaced with unordered multiset, therefore operations have to
specify the target sub-set. Law-Governed Linda (Minsky, 1994) maintains a
controller for each process where a set of communication related laws are applied,
which verify requests of primitive operations and ban their executions if they do
not adhere to some laws. LAURA (Tolksdorf, 1994) is a Linda-based approach to
help communications and contract-making in agent-oriented distributed systems.
More particularly, agents can send or receive messages with "forms" which can
contain descriptions such as service-offer, and service-request. And a collection of
primitives to handle forms are created. Sonia (Banville, 1996) is an adaptation of
Linda in information systems, which changes the original primitives to more
intuitive names such as "pos t " , "p ick" and "peek" . Additional primitives and
grammars for domain use are also introduced into it. Opus (Chapman, 1997) is a
super coordination language based on High Performance Fortran (HPF). It aims to
handle the problem of concurrent execution of several data parallel components. In
this concern it creates a ShareD Abstraction (SDA), an ADT that behaves like tup le
space, but provides methods to manipulate its state. Reo (Arbab, 2004) introduces

8 Flexible Software Architecture 295

the concept of mobile channel into coordination and takes connectors as coordinator.
LightTS (Picco, 2005) constructs a context awareness suitable Linda style model to
build the core of LIME (detailed later).

There are also coordination models of non-Linda style where the system evolves
by means of observing state changes in processes, or termed "process oriented
coordination", rather than exchanging data by an abstract global repository. They
possibly realize coordination by broadcasting changed state or send events to the
subscriber processes. For instance, Proteus Configuration Language (Sommerville,
1996) and Durra (Barbacci, 1993) can be categorized as this kind. But since our
concentration is on LIME, we will not discuss it further.

LIME (Picco, 1999; Picco, 2000; Murphy, 2006) is the abbreviation of "Linda in
a Mobile Environment". It is the derived Linda supporting development of mobile
applications physically, logically or a combination of them. In LIME, the global
tuple space featuring Linda is refined to handle the problems in the context of
mobile computation, where the separation of mobile units has to be concerned.

Tuple space is no longer a logical one piece but location awareness. Besides, more
functionalities and verification methods are introduced into LIME.

We return the problem of Linda~s implementation, which needs a global
accessible space that is persistent and capable of decoupling the time and space. In
a fixed distributed system, where all the nodes ~ locations and connections are
relatively stable, it is possible to run the tuple space equivalent component in one
or a cluster of hosts. However, in the mobile environment, where components tend
to move arbitrarily in the system or crossing the system edge, you cannot use any
of them to hold the tuple space since hosts cannot always remain accessible to all
other components. What ~ s more, issues such as power exhaustion, slowing down or
even cutting off of the network connection and heterogeneity make it rather
difficult, if not impossible, to establish a Linda-like framework. More concerns
should be taken into account in the architecture level by adding assistant elements
into the basic model.

The core idea of LIME is to break up the Linda tuple space into a set of sub
spaces, each of which is attached to one mobile agent permanently and exclusively,
referred to an "interface tuple space" (ITS). Each ITS contains tuples that a mobile
agent is willing to make available to others. And there are some rules for transient
sharing of individual tuple spaces according to connectivity. All the agents able to
connect to each other form a LIME "gr0up", within which contents of all individual
ITS are merged and thus transparently shared. Therefore, a logical tuple space
available to all mobile agents in a group is established. Noticeably, the number of
ITSs owned by one agent is unlimited. They are distinguished by symbolic names,
which is also the mark enabling share since in a group only ITSs named identically

can be shared transparently. For example, an agent named "agent l" has two ITSs,
S1 and $2, and another agent "agent2" contains S1 and $2. When they are connected,
two ITS named S1 are merged, and thus two agents can access tuples stored in S1
by each other. But agent 1 cannot assess content of $3 while agent2 cannot touch

296 Software Architecture

that of $3. Both $2 and $3 are accessible only in their own agent, or until new
agents with ITSs of these two names join in. In short, LIME only concerns
connectivity of ITS, whose names is the determining factor of transparent share.-
Each host may contain several mobile agents. And each agent may contain several
ITSs. LIME abstracts the distinctness introduced by the hierarchy levels. But it is
easy to implement an agent level or host level tuple space with LIME.

The joining of a group by a mobile agent and the subsequent merging of its local
context with a group context is referred to "engagement", which is an atomic
operation. When a mobile agent leaves the group, operation "disengagement" is
performed, thus the local context of ITSs of agents to be removed is deleted from
the group context, which can be perceived by other agents in the group
transparently.

LIME is capable of describing both physical and logical mobility. Physical
mobility means a host in the system moves within system range while keeping its
connectivity with other hosts; logical mobility means the reconfiguration of the
systems in which some components unbind the original connections and create new
ones. Logical mobility may occur with physical mobility when a component,
including code or resource, physically moves to another host during runtime. In
LIME, the transiently shared ITSs belonging to multiple agents collocated on a host
defme a "host-level tuple space". Similarly, the transiently shared ITSs belonging to
multiple connected hosts with host-level tuple space form "federated tuple space".
Therefore, in a federated tuple space, the accessible tuples may exis-t in any agents
running on any hosts (local or a certain remote one) in a group. When physical
mobility is required, the system can be modeled as several federated tuple spaces
crossing over physically distributed hosts. In the case of components physical
migration, there is no need to employ federated tuple space but to use only a fixed
host-level tuple space. If mobility is unnecessary, the model can be further
simplified just as original Linda. In this perspective, LIME is flexible to suit for
every mobility case. The effect of mobility manipulation, however, is not directly
affected by LIME, but a production of levels of units that establish tuple spaces.
This choice that sets the nature of mobility aside keeps LIME as general as
possible.

LIME hides very much for its users. If communication is expected, one side can
just throw a tuple in the space and the'other side peeks or picks its interested ones
asynchronously. But excessive transparence is not always positive. Consider the
following case. When agent l in the host l puts a tuple in the federated tuple space,
and then gets removed for some reasons, is this tuple accessible to any other agents?
Obviously it depends on where the tuple actually locates. Also, performance and
efficiency considerations may need fine-grained control of the tuple location. For
example, you may hope there should be sole tuple that locates where it is accessed
most frequently; or you estimate a great chance of disconnection and thus create
multiple cop ies of a single tup le among several hosts. Location-related primitives are
provided by LIME by adding location parameters to the operations manipulating

8 Flexible Software Architecture 297

transiently-shared tuple space. All tuples themselves also maintain two fields that
represent the tuple~s current location and destination locations respectively. The
current location indicates which agent should hold this tuple when all other agents
cannot be connected. The destination location means the target agent where this
tuple will eventually stay. LIME employs and extends three Linda primitives: out,
in and rd, but drops eval.

The out operation in LIME is written as out[-2~ (t) , where 2 is the location
parameter to specify destination agent. Its execution can be viewed as two steps:
firstly, the tuple t is sent to ITS of the agent, named co, which invokes this
primitive, equivalent to out(t), and the destination location is set as 2. The second
step depends on the connectivity of agent 2. If it is reachable, tuple t will
immediately be transferred to 2 ; i f it is not the case, tuple t will reside on co until 2
joins this group. During this process, the current location of tuple t is always the
agent name it currently resides on. If a tuple~ s two location parameters are
different, it is termed "misplaced" tuple, which will wait to change this state. If
some tuples on co are identified as misplaced targeting to 2, and then 2 joins in,
those tuples migrate from co to 2 during the process of engagement. This is shown in
Fig.8.16.

Fig. 8.16 The process of out[A~ (t) when A cannot be connected initially

Primitives in and rd also get extended by location parameters, in the form of in

[co,2} (p) and rd[co,2} (p) , which enable programmer to refer to a projection of the
current context defmed by the value of location parameters. The first parameter
normally is used to specify the search scope within federated tuple space; and the
second one is to identify whether it is misplaced or not. Further more, the

298 Software Architecture

parameters can be a name of an agent or a host.
LIME also provides the function of reaction extending Linda' s event model,

enabling some codes execution when some tuples ' states are changed. A reaction
will be fired when a tuple in the specified scope of tuple space, which matches a
predefined pattern, changes its state. The complete form of reaction is R~co, 2}(s ,
p , rn) where co and 2 are the location parameters with the semantics mentioned
above, s is the code segnent to be executed when conditions are met. s should not be
the potential blocking code that will put system into a suspend state, p is the tuple
pattern to specify the tuples that will fire reactions. And m is termed "reaction
mode" defining the automatic actions after execution of s. Two modes are set for
LIME: ONCE and ONCEPERTUPLE. When a reaction is registered as ONCE, it is
allowed to execute only once. After its execution, it is automatically deregistered and
then removed from current system. And a reaction registered as ONCEPERTUPLE
mode is allowed to execute exactly once for each matched tuple, so that the number
of execution is a function of system runtime.

Reaction is a powerful construct for designers to build their system. However, it
incurs a problem of realization about its atomicity. If reaction code can be executed
in a single atomic manner, it is named "strong reaction" which is an ideal model for
dynamicarchitecture. However, it is often impractical in the mobile system which
contains too many distributed nodes that bear low quality communications. In this
case, implementing atomicity among distributed ITSs will bring about tremendous
negative impact to performance. Therefore, LIME allows another kind of reaction,
termed "weak reaction", in which detection of tuple state changes and code
execution does not have to proceed atomically, and code execution takes place on the
host of the agent that registers that reaction.

LIME is an outstanding model to handle physical and logical mobility that
introduces dynamism by coordination perspective. Its basic model Linda greatly
simplifies development of distributed systems by separating the computing part and
coordination part, that is, decoupling time and space. LIME extends Linda by adding
the context awareness of tuple space, that is, breaking up the original one piece into
several local ITSs and correspondingly introduces location parameters to primitives
that facilitates control of system in a finer-grained level. Additionally, LIME
provides an effective mechanism of reaction to context changes. LIME defines its
semantics precisely with Mobile UNITY(Roman, 1997) which is not discussed
deeply in this section. LIME actually offers a framework capable of dynamically
configuring architecture. Although some problems of high level.dynamic architecture,
such as component type runtime creation, are beyond the scope of LIME, it is so
handy to be applied which makes programmers concentrate on their business.
Besides, it gives a new design paradigm for distributed systems in mobile
environment.

8 Flexible Software Architecture 299

8 . 3 Flexibility: Beyond the Dynamism

Flexibility appears far more in the world, for example, in the manufacturing field,
physics, or even management area. The extensive application of this term does not
mean that flexibility has been deeply researched or analyzed. In the contrary, this
case indicates that it is still in the status of chaos without precise definition or
framework guiding people to understand it. In the software architecture area, even
the proposals titled with this term always mix it with other features of software,
such as extensibility, characters that helps rapid development or dynamism. In this
concern, we should clarify what is flexible software architecture.

8 . 3 . 1 Concept of Flexible Software Architecture

The flexibility of an object is its ability to perform deformation under external
strength. If it is too hard, deformation is impossible; if it is too soft, it cannot
maintain its shape and recover when external force is removed. Both cases will
tremendously increase the cost of object 's usage. A flexible object can adapt itself
to fit for its external world, which reduces the price of using it, although building or
purchasing it may consume more. Imagine the case of waistband. For example, we
have four kinds of it:

�9 Rope as wais tband (long enough for most people): even though it is

feasible to use a rope as the waistband which can adapt for almost
everybody, few people use it because it is too difficult to manipulate and
rather unstable.

�9 Wais tbands with a fixed length: People who buy it cannot use it any

longer if their waistlines change. Or they can buy many waistbands with
different lengths. Therefore, too much will be spent on it.

�9 Wais tbands with a buckle and several holes (addi t iona l holes can be

d r i l l ed) : People like the waistbands of this kind because it can adapt to a
range of waistline only through simple manipulation. When people take
exercise, they can set it tightly; when taking dinner, they can set it loosely.
This is termed "user-oriented flexibility". If existing holes are not enough,
people can drill more of them, termed "developer-oriented flexibility".

�9 Elastic as wa is tband : This kind of waistband has no buckle, and does not
need any manipulation. But the ease is brought with price: its effective range
reduces and it is not so firm as conventional waistband. In short, it is suitable
for special purposes only.

From the waistband example, we can see that flexibility brings convenience and
promotion of cost performance. Besides, we can f'md some tips help to establish the
concept framework of flexible software architecture (FSA). This introduces issues
that should be taken into account around flexibility itself. First of all, FSA should
employ the architecture capable of changing during runtime. This is the key point of

300 Software Architecture

dynamic software architecture, the subject of Section 8.2. Compared to FSA, the

architecture featuring rigidity never changes its shape no matter how the
environment evolves over time. But it is so hard that when it is unsuitable
completely, it possibly cannot work continually, but stay in a crash or suspend

state. And the architecture organized in a loose style is so soft that it cannot be
directly used to support a particular system, but normally offers styles, patterns or
paradigms that just have meaning of guidance.

Secondly, FSA should be able to feel its context. During runtime, the main
triggers includes users' direct instructions, user patterns of operations, networking
issues, working load, natural factors and user customized factors, all of which can be
referred to the context in FSA. It is the external aspect that should be viewed as a
necessary part of FSA.

Thirdly, FSA needs to leave an interface through which users or developers can
activate the change process, similar as the buckles and holes in waistband. A direct
effect of this point is to separate the FSA control part with computing part that is
to handle the job. Although it is possible to mix them up, it is not a good design
strategy which will almost, if not for sure, lead to a chaos when scale gets larger and
new functions are added.

Fourthly, the ultimate goal of FSA is cost performance centered, or say, to ~ e
the proportion of benefit to cost. FSA tends to be available in a more ~naeric range in the
case that more additional effort should have been paid. This is specially important to
introduce FSA into current business built on software system to meet the changes that get
faster and faster, from years level to less than several seconds. Essentially, FSA is benefit-
driven. Even there is an architecture able to change dynamically, to collect information from
its context, and to provide an interface for manipulation by users or developers, it is
nonsense if it is weak in increasing cost perfonmnce, and thus cannot be identified as FSA.
Sometimes, however, even the effective range and interface seems not so powerful, an
architecture may be a suitable infrastructure to a special project in that it shows its
remarkable capability in some aspects, just as what the elastic waistband does. FSA should
not be a concept-limited in the technology world only, but is an effective solution for the
areas where business drives should be taken into account.

This four interrelated points construct the concept framework of FSA, and
shown in Fig.8.17.

Therefore, we give the following definitions:

Flexible Software Architecture is the context-driven dynamic software
architecture which can be explicitly controlled to achieve certain business
goals, especially the cost performance.

8 . 3 . 2 Trade-off of Flexibility

Compared to conventional software architecture, FSA indeed introduces additional
overhead to the software. They are often brought about to enlarge its effective work
range, that is, to handle more situations that are only expected possible or even
unknown in the design phase. More particularly, the price comes from two aspects:

8 Flexible Software Architecture 301

g~

�9 rJo

t D

r

.o <~

Cost Performance Concerns

Fig. 8.17 Concept framework of flexible software architecture

price of FSA development which means the time, effort and economic consumes by
adding extra functions and indirect layers; and price of FSA adaptation, which
includes the operations to trigger the change and the runtime overhead, such as
maintaining the meta-information and dynamic component loading or disposing.
Under the cost performance concerns, trade-offs should be taken in the benefits and
cost of flexibility, the primary issue in the design of FSA.

The most important of benefits brought by FSA is its effective work range, or
adaptive range. The absolute adaptive range is the set of functionality that an
architecture can support by adaptation. It is highly related to the granularity of
software constructs: the f'me-grained constructs are the critical elements in meeting
users ~ exquisite requirements, but consume much more than the coarse-grained ones.
For example, to build a house, we have two choices. The first one is building it with
fine-grained constructs, such as rocks, sands, water and the like. Through this
method, you can build a house of any style that you like. Another method is to use
build-in components, such as bricks, roof frameworks, tiles and so on. By making
use of them, you can proceed much faster and easier. However, your creativity may
be limited. If the absolute adaptive range is the sole target to pursue, the first choice
undoubtedly is the best one. However, in fact, very few people make this choice in
that it arouses too much trouble. Thereby, blindly enlarging the absolute adaptive
range is not the target of trade-off. Normally speaking a right combination of time-
grained and coarse-grained software constructs is the solution, by which most parts
of a system can be assembled with existing components while their seams are filled
by f'me-grained constructs. The developing of programming language proves this
point. Even in the time of object-oriented and component-oriented languages getting
rather popular, the low level languages such as assembly or C still can get their
positions. And Java still reserves the mechanism of JNI 1 until today.

Further more, absolute adaptive range is not the direct factors deciding the
experience of users. To compound the problem, we introduce relative adaptive range,

1 Java Native Interface, a mechanism allowing Java programmers to use functions written in C.

302 Software Architecture

indicating the set of user requirements that can be achieved via adaptation. Absolute
adaptive range does not concern the price brought by adaptation, while relative
adaptive range believes that only those functions which users need is necessary. For
example, to provide a general enough system, the development team implements a
programmable API, which can help users customize almost every detail of the
sys tem's behaviors. However, for users, especially the ones who are not familiar
with programming this API is completely useless, which only increase the
complexity and this the cost of that system. A typical example of it is Microsoft
Office, which offers the VBA APIs. Besides, general adaptive range often incurs
overhead, which may slow down the execution speed and increase the memory
occupation. This is evaluated by users. After evaluation, they decide whether they
feel good and whether they will continue to use them. In these concerns, relative
adaptive range, not absolute adaptive range should be considered carefully during
trade-off.

At last, profitable range is the adaptive range leading to the best commercial
profit. Software development organizations or companies prefer this range in that
relative adaptive range does not focus on the cost and risk introduced by developing
flexible software. Developing is a kind of business whose success determines its life.
The profit of developing flexible software can be split into two kinds: the visible
profits (comes from incoming of software sale and saving in software maintenance)
and the invisible profits (comes from users ' satisfaction and thus so f tware ' s
competivitiness). Obviously, the relative adaptive range and the cost spent on
developing flexible software is mutually excluded, and the trade-off point is
def'mitely where the profit can be maximized. FSA is a panacea to improve this
situation by tremendously reducing the cost of flexible software development, Just
like a template, FSA can be used as a reference framework which then is fine-tuned
to meet various flexible requirements. In this way, cost, time-to-market, and the
quality of flexible software, corresponding with the explicit application of FSA, can
be optimized.

It is a common belief that software development is risky and flexible software
development holds this. Therefore, before burying head into the design activities,
estimation about the expected adaptive range, complexity, approximate cost and
benefits should be taken first, all of which are beyond the technologies but more
important. This is called the phase of decision making on general strategies. Here is
an illustrative economic model of flexible software development.

The cost of first develop~t of flexible software is obviously higher than that of
conventional software. But since its flexibility, in the subsequent development and
maintenance, flexible software costs less and finally proves its advantages. Corresponding
with increase of the anaount of requirements, its marginal cost gradually becomes smaller,
approaching to zero, that rmans during some period, the flexible software can adapt itself
(within the ___ad~__ tive range). Here, even no additional development is needed, and software
changes dynamically. Conversely, conventional software requires additional iterations,
including requirerm'nts collection, redesign, implementation and d e p l o y ~ t , which force the

8 Flexible Software Architecture 303

Total Cost of
Development

Cost of First
Development

O
Initial Requirements
Specification

Conventional

z"

Amount of
Requirements

Fig. 8.18 Economic model of flexible software development

software to stop working and thus incurring more loss which is added in its rmrginal cost.
Therefore, the curve of conventional software owns a scope increased along with more and
more requirenaents. However, if requirements experience few changes, so that flexibility does
not fully make contribution, it is the time to hold a conference to discuss whether the
adaptive range should be reduced. For users, relative adaptive range i n , roves its usability
and applicable area; for developers, pi'ofitable range avoids thewaste of cost, effort and
time incm-red by blindly seeking for flexibility. In conclusion, trade-off between relative
adaptive range and profitable range is necessary to fred the most ideal flexibility.

8 . 4 Study Cases

In this section, we will give a brief introduction of two proposed (pro to type)
systems that employing the FSA. They are self-adaptive and self-managed systems
with different focuses. By the way, not all the self- system can be considered as the
flexible software because some of them never touch architecture, but achieve those
changes via simply invoke those functions that are always standby since their start.
In other words, the layouts of their structures remain the sample and their behaviors
do nothing to affect their architecture. The cases in the following explicitly put their
software architecture on the front page, rather than a ghost like abstraction behind
the system. Thanks for the architecture-based flexibility, they achieve the tasks
which seems difficult, if not possible, in those conventional software systems.

8 . 4 . 1 Rainbow

Rainbow (Garlan, 2004) is a self-adaptation infrastructure aiming at solving two
problems that harasses developers in building adaptive systems for a long time: the

wide variety of systems that a general self-adaptation infrastructure has to face,
considering their different domains and specific concerns; and the overhead that may

304 Software Architecture

be incurred by adding external control components. Rainbow includes a runtime
global model of architecture, represented by a structure of interconnected
components and connectors, attached with system-level exposed behaviors and
important properties. Besides, a set of constraints and strategies are also maintained
in the model, help to ensure the validity of changes. Fig.8.19 is Rainbow' s overall
framework (Garlan, 2004).

Fig. 8.19 Overall framework of Rainbow

Rainbow separates the system into the adaptation infrastructure and system-
specific adaptation knowledge part. The former contains the system, architecture
and translation layers, facilitating the general functions of self-adaptation systems.
More particularly, the system layer defines an interface to manipulate Rainbow.
Additionally, Effectors are constructed for performing the actual system
modification. Probes and Resource Discovery are employed to query system's
properties and resource respectively. In the architecture layer, Model Manager
holds the runtime architecture model, which updates itself with new property values
collected by Gauges. The Constraint Evaluator periodically checks the validation of
constraints and triggers adaptation. The Adaptation Engine and Adaptation Executor
together determine the detailed actions of adaptation and start that course. And the
translation layer maps the architectural elements into the concrete elements of the
system.

The system specific knowledge means to tailor the adaptation infrastructure to
adapt itself to one certain system. The specific knowledge includes the set of valid
adaptation operations under an architectural style and corresponding strategies. The
valid adaptation operations mean those actions that can be correctly applied to a

8 Flexible Software Architecture 305

style, commonly implemented as methods of the style or component representing
types. A sample code of strategies is shown in Fig.8.20. The keyword invariant
specifies an "action-reaction" relationship, where the adaptation behavior is set
after the "! (" mark. A strategy is defined in the function like style. In this case,
when memory occupation of the SampleComponent c is too high, it then checks
every sub-component typed ServiceProvider. If one service is not used currently
(when its access count is 0), it is removed followed by the update of runtime
architecture model. Finally the architecture gets changed by the actions specified in
the method removeServcie.

invariant (self. memOccupation ~ maxMemOccupation)

! (memControlStrategy(self) ;

strategy memControlStrategy(SampleComponent c) {

foreach ServiceProvider s of c {

if(query("access--count", s) =-- O) {

c. removeService(s) ;
>

}

return true;

Fig. 8.20 Sample code of Rainbow strategy

Systems that want to make use of Rainbow should access its interface and
provide system specific knowledge by following Rainbow~s guide. Rainbow
essentially is a two-layer reflective system but leaves plenty of hook points for
customization. But the distributed systems built on Rainbow will notice that the
Rainbow infrastructure actually plays a role of coordinator that is capable of
boosting the system toward overall adaptation goals.

8 . 4 . 2 MADAM

MADAM (Mobility and ADaptation-enAbling Middleware) (Floch, 2006) is an
adaptive middleware for mobile computing, The middleware has three functions:
collecting information from context, reasoning about the adaptation behaviors and
imp lementing those actions.

The mobile environment faces frequent variety, coming from the users, the
natural factors and the mobile applications themselves. Under such circumstances, it
is common to adapt to various context. The ultimate objective of MADAM is to
realize runtime self-adaptation in mobile devices. As the computing and memory
resource is restricted, MADAM attempts to reduce the overhead as much as
possible and ensures the quality of services.

The architecture model of MADAM is described as a composition of component
types which specify the behaviors for communicating, The variants of runtime
components are achieved as distinct component implementations which conform to
those types. The components types construct application's framework. And during
runtime, application chooses the best implementations and activates them according

306 Software Architecture

to runtime status and selection rules. The type-implementation relationships can be
nested, that is, a type may contain several implementations; and an implementation
is defined as a sub-framework composed of types. An illustrative example is shown
in Fig.8.21.

Text-based t
Presentation -]

I

Ii1__

t Html-based _]
Presentation

Legend

implementation

type

implement
.

System Imp I

- - - < Presentati~ 1 _ J

I
< usi:ess

i

DB Controller
Impl

-t Business Impl

Simple DB

Distributed DB

DB]

ontroller DB

I

I

I

I ~ - - I

__2

. . . . I

Fig. 8.21 Sample MADAM framework

Associated with the framework, the implementations contain properties defined
by their types and corresponded with the ports which regulate the calculation rules.
For example, the memory occupation of a SimpleDB is calculated according to all its
records; and that of a DistributedDB may be calculated via the summation of each
contained sub DB implantations. For achieving this task, each implementation
employs property predictor functions to calculate the property values in a given
context. During the "choose" phase, MADAM uses the utility functions, which
associate one weight value to each kind of property, to generate the final utility
values for architecture candidates combined by an arbitrary set of implementations.
MADAM aims to adapt the application to the architecture candidate with the
highest utility value. In this mechanism, those weights reflect users ' needs and
concerns, and can be adjusted if they wish to.

An implementation of MADAM in the form of middleware has been published
in http://www.ist-madam.org, whose work flow is shown in Fig,8.22. The Context
Manager initializes, aggregates and predicts the context relevant properties and
notifies their changes to Adaptation Manager, who subsequently takes the reasoning
and evaluating job with framework architecture model, and finally generates the valid

8 Flexible Software Architecture 307

reconfiguration solution. And Configurator is responsible of comparing the input
reconfigured model and current instance architecture model, the representation of
current application architecture with concrete implementations. When appropriate
(the new model owns a higher utility value, for example), Configurator executes the
reconfigure step s.

Context
Model

Context Manager

Framework
Architecture
Model

Notify context
change Adaptation

"- Manager

Instance
Architecture

R e ~ e 1

selected variant
~__ Configurator

Reasoning and evaluating
variants

Fig. 8.22 MADAM Middleware

MADAM seems similar to Rainbow. They both maintain the runtime
architecture models; both reflect the context through properties; both separate the
adaptation and computing parts. However, they are different in those aspects of
their specific concerns. Rainbow is a general infrastructure attempting to suit for a
variety of systems. The result is it is split to the common adaptation modules and
system specific knowledge part. Meanwhile it adopts a complicated architecture
model facilitating the increase of its adaptive range. W h a t ' s more, it defines a
language to specify the adaptation strategies. In the contrary, MADAM is designed
for mobile devices. It has to simplify everything to accelerate the process of
reasoning and adaptation. Its framework architecture model is rather concise, only
suitable for the actions such as component replacing. The adaptation rules in
MADAM use the simple utility functions, effectively reducing the overhead
incurred by reasoning.

There are many other examples of flexible software. (Yang, 2006) introduces
mobile agent into the architecture-based self-adaptation. (Zhang, 2006) establishes
runtime architecture model with Petri Net. (Mun, 2006) brings flexibility into the
fractal manufacturing system (FrMS). And (Kim, 2005) integrates architectural self-
management with software product lines.

8.5 Summary

This chapter discusses a new branch of research on software architecture. Flexible
software architecture is alive. They can feel and take some responses, during which
the change behaviors may be validated and ensured as harmless. This capability is a
natural extension of the change forms of software, from the maintenance of

308 Software Architecture

software's extensibility with such as encapsulation and decoupling, to the manual
reconfiguration by writing configure files or changing settings of preference, and
finally to the self-behaviors. This is an evolution triggered by faster and faster
changes of context, which are driven by business objectives, such as commercial
benefits or promotion of competivitiness.

Flexible software requires the support of dynamic software architecture,
represented by a model or a language that explicitly focuses those behaviors
performing the changes in architecture level and the consequence of their executions.
The great thing about this is that it restricts the dynamism under control before the
implementation dependent model is created, which lets you focus on the issues of
highest risk brought by dynamic behaviors. We mention four kinds of formal
foundation in the dynamic architecture area, and all of them have their own features.
Graph-based approaches are easy to handle, but only concentrate on structures;
Algebra Process based models emphasize on behaviors. It is an elaborated method
which enables reasoning and validating in a punctilious manner, and thereby evokes
too much trouble for practice use. Some ADLs based on them are trying to make the
trade-off between formal features and usability. Reflection theory extends the
deepness of dynamism. With an infinite number of meta-layers, it is possible to
create new component or connector types or even their meta-types if one wishes to.
But it has to cooperate with other models together to specify a concrete project. In
this perspective, it should be viewed as an infrastructure to describe dynamic
software architecture. And Coordination Model provides an abstraction of
communication in distributed systems which are very easy to use. But it does not
explain how the dynamic behavior happens, but only solves the problems assuming
dynamism is given. And it has to define semantics with the help of other formal
languages, for example, UNITY.

Flexible software architecture is beyond dynamic architecture, by combining the
context awareness and explicit maintenance of runtime architecture model. To apply
a flexible software architecture, pre-planning is necessary. This allows people to
choose suitable adaptive range, more particularly, taking trade-off among absolute
adaptive range, relative adaptive range and profitable adaptive range.

Finally we give brief introduction tO several typical examples based on flexible
software architecture, which follow the general idea of flexible software architecture,
and start the initial stage of software of the next generation.

References

(Ahuja, 1986) Ahuja, S., Carriero, N. & Gelernter, D. Linda and Friends. Computer
1986(19): 26-34.

(Allen, 1998) Allen, R. J., Douence, R. & Garlan, D. Specifying and Analyzing
Dynamic Software ArchitecturesLncs 1382, Fundamental Approaches to
Software Engineering. Springer.1998.

8 Flexible Software Architecture 309

(Anreoli, 1996) Anreoli, J. M., Hankin, C. & M tayer, D. L. Corrdination
Programming: Mechanisms, Models and Semantics: Imperial College Press.
1996.

(Arbab, 2004) Arbab, F. Reo: A Channel-Based Coordination Model for
Component Composition. Mathematical Structures in Computer Science 2004
(14): 329-366.

(Banville, 1996) Banville, M. Sonia: An Adaptation of Linda for Coordination of
Activities in OrganizationsLncs 1061, Coordination Languages and Models.
Springer. 1996.

(Barbacci, 1993) Barbacci, M. R., et al. Durra: A Structure Description Language
for Developing Distributed Applications. Software En~neering 1993(8): 83-94.

(Bradbury, 2004) Bradbury, J. S., et al. A Survey of Self-Management in Dynamic
Software Architecture Specifications. Proceedings of the 1st ACM SIGSOFT
workshop on Self-managed systems Newport Beach, California.2004:28-33.

(Carriero, 1989) Carriero, N. & Gelemter, D. Linda in Context. Communications of
the ACM 1989(32): ~A.-458.

(Carriero, 1994) Carriero, N., Gelernter, D. & Zuck, L. D. Bauhaus LindaLncs 924,
Selected Papers from the Ecoop '94 Workshop on Models and Languages for
Coordination of Parallelism and Distribution, Object-Based Models and
Languages for Concurrent Systems. Springer.1994.

(Chapman, 1997) Chapman, B., et al. Opus: A Coordination Language for
Multidisciplinary Applications, TechincalReport, TR-97-30, 1997.

(Chaudet, 2001) Chaudet, C. & Oquendo, F. (2001). Pi-Sp ace: Modelling Evolvable
Distributed Software Architectures. In: Arabnia, H. R., (Ed) Pdpta'2001:
Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications. Athens: C S R E a Press.

(Cimpan, 2005) Cimpan, S., Leymonerie, F. & Oquendo, F. Handling Dynamic
Behaviour i n Software ArchitecturesSoftware Architecture, Proceedings.
Berlin: Springer-Verlag Berlin.2005.

(Clemens, 2006) Clemens, S. Modeling and Analyzing Mobile Software
Architect ures .2006.

(Cuesta, 2001) Cuestal C. E., Fuente, P. d. 1. & Barrio-Solarzano, M. Dynamic
Coordination Architecture through the Use of Reflection. Proceedings of the
2001 ACM symposium on Applied computing Las Vegas, Nevada, United
States.2001:134-140.

(Cuesta, 2005) Cuesta, C. E., et al. An "Abstract Process" Approach to Algebraic
Dynamic Architecture Description. Journal of Logic and Algebraic
Programming 2005(63): 177-214.

(Floch, 2006) Floch, J., et al. Using Architecture Models for Runtime
Adaptability. Software, IEEE 2006(23): 62-70.

(Fuggetta, 1998) Fuggetta, A., Picco, G. P. & Vigna, G. Understanding Code
Mobility. IEEE Transactions on Software Engineering 1998(24): 342-361.

(Garlan, 2004) Garlan, D., et al. Rainbow: Architecture-Based Self-Adaptation

310 Software Architecture

with Reusable Infrastructure. Computer 2004(37): 46-54.
(Gelemter, 1992) Gelemter, D. & Carriero, N. Coordination Languages and Their

Significance. Communications of the ACM 1992(35): 96.
(Georgiadis, 2002) Georgiadis, I., M agee, J. & Kramer, J. Self-Organising Software

Architectures for Distributed Systems. Proceedings fo the first workshop on
self-healing systems, Charleston, South Carolina.2002:33-38.

(Gruhn, 2000) Gruhn, V. & Schafer, C. An Architecture Description Language for
Mobile Distributed SystemsSoftware Architecture. Berlin: Springer-Verlag
Berlin.2004.

(Hirsch, 1998) Hirsch, D~, Inverardi, P. & Montanari, U. Graph Grammars and
Constraint Solving for Software Architecture Styles. Proceedings of the 3rd
Inernational Software Architecture Workshop (ISAW-3).1998:69-72.

(Kim, 2005) Kim, M., Jeong, J. & Park, S. From Product Lines to Self-Managed
Systems :An Architecture-Based Runtime Reconfiguration Framework. ACM
SIGSOFT Software Engineering Notes 2005(30): 1-7.

(M tayer, 1998) M tayer, D. L. Describing Software Architecture Styles Using
Graph Grammars. IEEE Transactions on Software Engineering 1998(24): 521-
533.

(Maes, 1987) Maes, P. Concepts and Experiments in Computational Reflection.
Conference Proceedings on Object Oriented Programming Systems, Languages
and Applications, Orlando, Florida, United States.1987:147-155.

(Magee, 1995) Magee, J., et al. Specifying Distributed Software Architectures.
1995.

(Maloe, 1994) Maloe, T. W. & Crowston, K. Interdisciplinary Study of
Coordination. ACM Computing Surveys 1994(26): 87-119.

(Minsky, 1994) Minsky, N. H. & Leichter, J. Law-Governed Linda as a
Coordination Model. LNCS 924, Selected papers from the ECOOP'94
Workshop on Models and Languages for Coordination of Parallelism and
Distribution, Object-Based Models and Languages for Concurrent Systems
1994.

(Mun, 2006) Mun, J., Ryu, K. & Jung, M. Self-Reconfigurable Software
Architecture: Design and Implementation. Computers & Industrial Engineering
2006(51): 163-173.

(Murphy, 2006) Murphy, A. L., Picco, G. P. & Roman, G.-C. Lime: A
Coordination Model and Middleware Supporting Mobility of Hosts and
Agents. ACM Transactions on Software Engineering and Methodology 2006
(15): 279-328.

(Oquendo, 2003) Oquendo, F. The Archware Architecture Description Language:
Turorial, Techincal Report, Report RI.I-1, 2003.

(Oquendo, 2004) Oquendo, F. II-Adl : An Architecture Description Language
Based on the Higher-Order Typed H-Calculus for Specifying Dynamic and
Mobile Software Architectures. ACM SIGSOFT Software Engineering Notes
2000(29): 1-14.

8 Flexible Software Architecture 3tl

(Oreizy, 1999) Oreizy, P., et al. An Architecture-Based Approach to Self-
Adaptive Software. IEEE Intelligent Systems 1999(14): 54-62.

(Papadopoulos, 1998) Papadopoulos, G. A. & Arbab, F. Coordination Models and
Languages Techincal Report, SEN-R9834 1998.

(Parrow, 2001) Parrow, J. To an Introduction to the//-Calculus Handbook of
Process Algebra. Elsevier.2001.

(Picco, 1999) Picco, G. P., Murphy, A. L. & Roman, G. C. Lime: Linda Meets
M obility. 1999:368-377.

(Picco, 2000) Picco, G. P., Murphy, A. L. & Roman, G.-C. Developing Mobile
Computing Applications with Lime. Proceedings of the 22nd international
conference on Software engineering. Limerick, Ireland.2000:766-769.

(Picco, 2005) Picco, G. P., Balzarotti, D. & Costa, P. Lights: A Lightweight,
Customizable Tuple Space Supporting Context-Aware Applications.
Proceedings of the 2005 A C M symposium on Applied computing Santa Fe,
New M axico.2005:413-419.

(Roman, 1997) Roman, G.-C., M cCann, P. J. & P lun, J. Y. Reasoning and
Specification in Mobile Computing, A C M Transactions on Software
Engineering and Methodology 1997(6): 250-282.

(Sangiorgi, 2001) Sangiorgi, D. & Walker, D. The //- Calculus : A Theory of Mobile
Processes: Cambrige University Press.2001.

(Schmerl, 2002) Schmerl, B. & Garlan, D. Exploiting Architectural Design
Knowledge to Support Self-Repairing Systems. Proceedings of the 14th
international conference on software engineering and knowledge engineering,
Ischia, Italy.2002:241-248.

(Sommerville, 1996) Sommerville, I. & Dean, G. Pcl: A Language for Modeling
Evolving System Architectures. Software Engineering 1996(11): 111-121.

(Taentzer, 1998) Taentzer, G., Goedicke, M. & Meyer, T. Dyanmic Change
Management by Distributed Graph Transformation: Towards Configurable
Distributed SystemsLncs 1764, Theory and Application of Graph
Transformations. Sp ringer. 1998.

(Tolksdorf, 1996) Tolksdorf, R. Coordinating Services in Open Distributed
Systems with LauraLncs 1061, Proceedings of the First International

Conference on Coordination Languages and Models. Sp ringer. 1996.
(Wermelinger, 1998) Wermelinger, M. Towards a Chemical Model of Software

Architecture Reconfiguration. IEE Proceedings- Software 1998(145): 130-136.
(Wermelinger, 2001) Wermelinger, M., Lopes, A. & Fiadeiro, J. L. A Graph Based

Architectural (Re)Configuration Language. Proceedings of the 8th European
Software Engineering Conference and 9th A C M SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE 2001). Software Engineering
Notes, 2001 (26): 21-32.

(Yang, 2006) Yang, Q., Yang, X. & Xu, M. A Mobile Agent Approach to Dynamic
Architecture-Based Software Adaptation. A C M SIGSOFT Software
Engineering Notes 2006(31): 1-7.

312 Software Architecture

(Zhang, 2006) Zhang, J. & Cheng, B. H. C. Model-Based Development of
Dynamically Adaptive Software. Proceeding of the 28th international
conference on Software en~neering Shanghai, China.2006:371-380.

A V i s i o n on S o f t w a r e A r c h i t e c t u r e

In this chapter, we summarize software architecture in modem software industry;
we mainly describe the importance of SA in the whole software engineering circle. In
its following section, we list the main research areas of software architecture in
future. After reading this chapter, readers will know the position of SA in software
engineering, and what we can do about software architecture.

9.1 Software Architecture in Modern Software Industry

In modem times, the software industry has become the main force which impulses
our economy. At the same time, software industry is the important guarantee that
keeps our nations independent. In the following sections, we will introduce the
categorizing of software and software product line.

9 . 1 . 1 Categorizing Software

Software can be classified as package, embedded software and software services. In
the following paragraphs, we will take China as example.

In China, the earning of package in 2004 is 47.8 billion. In this earning. 8.996
billion is system software, middleware is 698 million, and application software is
3.0453 billion. The earning of embedded software is 67.4 billion, and the earning of
software service is 93.7 billion.

According to the data above, we can f'md:
�9 The global market of software is continually increasing, especially in China.

But the quotient of China is still so low. In 2003, the increase ratio of global
software industry is 7.39%, the whole scale is 749 billion dollars. It keeps on
making great contributions to the development of world 's economy. In China, the
increase ratio is even higher. For instance, the whole earning is 160 billion in 2003,
which is about 19.3 billion dollars, and increases about 45.45% to the 2002. Within
this 160 billion, the export earning is 2 billions, which increases about 33.33% to
2002. Although we make great improvement, the global quotient of China is only

314 Software Architecture

2.5%. Compared with the U.S. (about 39.67%) and Japan (about 10.22%), we are
still so small. But this fact also indicates that we have large space to develop our
software industry.

�9 The application software develops quickly, but system software develops a
little slowly. At present, 11 software industry bases, 6 software export bases and
172 key enterprises are built. In 2003, the earning of application software is 59.5
billion, which increases 85.5% by last 2002 and is about 74.2% in all the earnings of
software products. In the same time, the system software develops slowly, the
earnings in 2003 is about 7.8 billion, increases by 14.7%, and is about 9.5% in all
the earnings of software products. Many foreign products still keep high market lot.

�9 If we take stock of international market, we can find in the post PC times,
the development of information electric fitment, mobile telephone and PDA
provides wide market for the development of embedded software. In 2004, the
earning of global embedded software reaches 200 billion dollars. In recent years, the
embedded software in China also develops quickly, and the ratio of embedded
software in software industry is increasing, especially in communicating areas. In a
lot of communication devices, the value of embedded software is about 30% --40%
in the whole device. In mobile device, digital fitment, digital machine tool,
automobile electronic, medicine electronic, aviation and spaceflight, entertainment
facility, the earning of embedded software is about 10% -- 30% in the total value of
device. The digital content industry is developing dramatically, especially network
games. In 2003, the earning of global network ~ n e is about 30 billion. The earning
of network games in America and China has already exceeded the earning of movie
industry. Peop le ' s culture is not only cartoon, games, but also the applications
based on digital content process and service technology which are involved into
education, culture and science. In 2003, the market of digital content industry is
about 1.5% in international market. In China, the market of digital content industry
will develop rapidly in 5 to 10 years, maybe will increase about 30% every year.
The market requirement is bloom.

�9 The software industry is to be of network, of service, and globaliz at ion.
Network is the most powerful development trend. The regulation of software
industry is changing, software is changing from product to service; software
industry turns into service industry.

The second class of software is system software. System software can control
and harmonize computer, communicate devices and other external devices, can make
them work so as to facilitate Users. This software can provide middle support and
run-time environment. System software can be classified as operating system,
database management system and sustain software.

As computed, in 2004, the market scale of system software in China is 8.996
billion, among which market of operating system is 4.419 billion (about 49% in all
the system software market); the market of database management system is 2.006
billion, the market of sustain software is 2.571 billion.

After several decades, system software has become a large industry; the Unix/

9 A Vision on Software Architecture 315

J2EE, Windows/Net/and Linux/OSS are formed. Unix/J2EE is good at its techniques;
Windows/Net strengthens its monopolization position. The Linux/OSS system is
developing under the banner of open source.

With the rapid development of information technology, technique of system
software is changing and developing. The trends of system software are
systematization, network and high reliability.

�9 systematization. At present, competition of software is not only product
competition, but also system competition. Operating system, database management
system and middleware software is merging, software development toolkit is
integrated with software runtime toolkit, forming a uniformed basic software toolkit.
For example, in the product of "NET" , operating system, database system,
component runtime toolkit and other related software development environment are
included.

�9 Network. With the coming of network period, information techniques are
facing the change from "machine-centered" to "network-centered". Because it is
system software, but not users that accomplish the performance optimization, the
code which can be written once, but run anywhere is the necessity trends.

�9 High reliability. The large hardware resource and complicated software
hierarchy make information system face a challenge of controlling complexity.
Society are dependent more and more on software. Once the national defense and
commercial sustain software systems are damaged, the result is calamity.
Information society is based on service and dependents more on service's time and
availability. High reliability techniques which have high availability and QoS are the
main research content of future system software.

Of course, Internet is the greatest technique development in the 20th century; its
popularization and development provide us a global scale information base
establishment.

How to provide available software techniques and products for a number of
network resources is an important requirement and this requirement makes the
middleware appear as a new type of software. From its original function, we can
fmd that middleware is a distributed software which is in the middle of system
software and application software and link system software and application
software on the internet, this kind of software mainly solves the interconnect and
interoperation problems of distributed software on the heterogeneous network
environment.

With the rapid development of internet, middleware has more and more
connotation, becomes the middle place software. Its main goal is to meet the
requirement of large scale application software that runs on different platforms in
the network distributed computing environment. This kind of software can shield
the heterogeneity of computer 's hardware and software, and is the platform which
sustains the application software

Because of the importance of middleware, the main computer enterprises all
make their own middleware software platform strategic plans and application

316 Software Architecture

solutions. The main research plan includes: Sun' s SUN ONE plan, IBM' s WEB
SERVICE strategic plan, Oracle' s network software platform develop plan based on
Oracle 9i, Microsoft ' s Microsoft Net plan, B E A ' s WEBLOGIC, etc. At present,
three main distributed computing standards are formed, which are CORBA, J2EE
and DCOM. At the same time, W3C provides the network information change
criterion and XML standard.

At present, the main development trends of middleware includes: (1) Middleware
techniques directly support component's deployment and running at the
implementation level, and object middleware are developing towards the component
middleware. (2) Internet's dynamic and open characteristic and the industry
patterns requires that systems based on different middleware are capable of
interoperating on internet, so the web service appears as " middleware's
middleware". (3) Because of its low band and low availability, wireless network
makes a challenge for the middleware techniques, generating a new research
hotspot--mobile computing middleware. (4) The requirements for opening the inner
detail of middleware and reusing middleware' s functions in a manner of "white
box", lead to the research of reflective middleware. (5) The function' s Quality of
Service for the high level application provided by middleware has been attached
much importance. (6) For a middleware, how to support a number of resources
becomes an important application fields we must face.

In 2003, the market of global middleware software increases quickly, the total
turnover is about 7 billion dollars, increased by 27% compared with the last year.
The earning of middleware product in America market is 4.8 billion, which occupies
about 68.6% in the global middleware market. As computed, in 2004, the scale of
middleware market in China is 0.698 billion, the increase rate is 30.5%, which is
higher than the whole increase rate Of China' s IT market. The main enterprises such
as BEA, IBM, Oracle, Microsoft and SUN always dominate China' s middleware
market, and has main market lot.

In this part, we will discuss the trends of application software. Application
software can implement a concrete application, but not need users to program again.
This kind of software can be classifies as general application software and special
application software. Generally speaking, general application software includes
security software, office software, management software and game software. Special
application software is customized for a special use of a special industry, which can
meet special requirement. This kind of application includes finance, telecom,
government, education, scientific research, energy sources, traffic, etc. ~

In China, the application software develops especially quickly; the techniques
improve fast, especially industry application software.

In this paragraph, we will discuss the development trends of embedded software.
Embedded software includes embedded operating system, embedded software
develop tools and embedded middleware.

In recent years, the embedded software industry develops quickly in China; the
proportion is increasing in the software products. As computed, in 2004, the market

9 A Vision on Software Architecture 317

scale of embedded software in China is 67.362 billion, which is beyond the suit
software, and becomes the second largest earning of software industry. At present,
the market of embedded software is being divided. Products facing different fields
appear, including intelligent cell phone, digital devices, automobile electronic and
traditional industry alteration. The research and application of embedded software
has become the main techniques for "information bring along industry", and became
the important force of software industry developing in China.

In recent five years, embedded software has the following developing trends:
�9 The core of embedded operating system is getting smaller, more reliable, more

available, higher in performance and better constructed in structure. The operating
system begins to support integrated development and debug, More over, Model
Driven Development (MDD) provided by embedded operating system is also
entering the period Of getting mature. Wireless communication and power
management is becoming more and more important.

�9 Open source in the industry level is becoming popular, especially in the area
of domain specific embedded operating system. Different enterprises make up their
own standards and platforms, which share something in common: these standards
and platforms support system open, share of design technology, reuse of software
and hardware and compatible application. With the help of them, maintenance and
collaboration are more convenient, which is critical and effective to increase
capability of competition.

�9 Technologies in those free open source software are extraordinarily favored in
embedded applications. For example, Linux for embedded devices is on the way of
becoming the mainstream. Linux is excellent in its characters of open, modularity,
high execution performance and reliability, accepting technique support from the
software development enthusiasts around the world. And J2ME/JINI, the
representative of embedded software development technologies, is another case of
open source's influence to embedded area.

�9 The trend of integration between embedded software and System On Chip
(SOC) is more obvious. The quick development of SOC forces the amalgamation. In
this case, the edge between these two areas becomes more blurry. Embedded
software is often existed in the form of hardware Intellectual Property (IP), which
helps to improve the performance in real time, and to enhance the maintainability.
The component library technology based on embedded IP is creating a growing up
software industry.

�9 The "deep connection" of Intemet and the "dynamic reconfiguration" of
sensor networks improve the tight combination between the embedded and the
Internet technologies. Thus, the embedded products and the Internet applications
promote each other. Finally the former will become the primary terminals of
Internet. And its soul, embedded operating system will help to improve the
experience of Intemet.

�9 The ubiquitous embedded software will get the crucial position in the trend of
embedded software development. Its ubiquitous, self-adaptive, nomad and

318 Software Architecture

permanent features will bring creative development to the embedded area. Wireless
communication products based on it will get the importance in the area of embedded
software. This kind of software enables that anyone can access any information
anywhere at any time.

In this paragraph, we will discuss the development trends of software service.
Software service industry is all the software researches and relevant activities except
producing application software, including system integrated, software contract,
consultation, software customization, data processing and machining, system
maintenance, management, etc. In short, software service is an important modern
service industry.

As computed, in 2004, the earning of software service in China is about 93.7
billion, which is about half of the total software industry earning, and is the largest
module of the software industry, which attracts most people. Software processing
service is about 20 billion, which is one of the most important industry trends of
software service.

The software industry is one of the fastest growing industries in the world. Even
companies that have been associated largely with hardware in the past, estimate that
80% ~ 90% of their engineers are involved in software development. As a
consequence of this rapid expansion there is a serious worldwide shortage of
software engineers who are able to deal with the complexity of developing high
quality software systems.

9 . 1 . 2 Software Product Line

Developing software architecture needs plenty of time and money, it also needs
intelligent personnel to take part in. Therefore, we hope to reuse the architecture in
different systems so as to get the most return. An organization which is good at
architecture treats its architecture as the most valuable fortune, and is searching the
best methods to generate extra earning and debase its cost through using its
architecture. Generating extra earning and debasing its cost both can be imp lemented
through reusing architecture.

In this part, we will discuss how to reuse software architecture explicitly after
programming in relative systems. When an organization develops many similar
systems and uses the same architecture, it can get more advantages, including cost
debasing and time-to-market shortening. This is just what the advantages of
software product line. We can define it as:

A set of software-intensive systems sharing a common, managed set
of features that satisfy the specific needs of a particular market segment
or mission and that are developed from a common set of core assets in a
prescribed way. (Clements, 2001)

After finishing the software product line, we can save every reusable asset in the
"core asset base", because we can apply it in many systems, the reusable asset is
more to our profit. In the ideal case, the core assets have variation point, that is to
say, we can delete it quickly. In a successful product line, system architecture turns

9 A Vision on Software Architecture 319

into getting proper asset from the core asset base, then we can adapt it according to
the requirement of the current system we will build, then we can combine them to
form an integrated system.

Of course, the product line has nothing new the manufacturing, At present,
every company use different method to reuse the common things sufficiently. The
"software" product line based on the common things of products represents a
creative, development concept in software engineering. Every user has its own
requirement, and this demands the flexibility of every company. The software
product line simplifies the creation of system aiming at special user and user group.

The successful use of product line brings cost debasing, time-to market
shortening, the benefit is so great. We will give two examples:

�9 After using product line, Nokia produce 25--30 telephone models from 4 in
the past.

�9 After using product line, Cummins Company can produce software about
diesel engine in 1 week for 1 year in the past.

Creating a successful product line depends on the software engineering,
technique management, and organization management~s corporation. We will mainly
discuss software architecture in software engineering.

The essence of software product line is: when producing product family, we
reuse asset in a canonical, politic way. The companies and development personnel
think product line is so useful, because we can use the common characteristics
through reusing, so as to realize the product value. The factors of software product
line includes:

�9 Requirement: most requirements are similar to the systems developed earlier,
so we can reuse it, not needing analysis of requirement.

�9 Architecture design: when designing software architecture, the most intelligent
personnel must put much time in the process. We have found that, after
establishing architecture, the quality aim is diminished in much degree (such as
performance, reliability, modifiability, etc.). If the architecture is not proper,
the system development for sure is not successful. But, for the development
of a new product, we can jump over this step through reusing architecture.

�9 Element: software elements are useful in single product. In general, it is only
code reuse. The element reusing includes: reusing original design work,
capturing and reusing the redeeming feature of a design, avoiding the bad
designs. The element mainly includes: interface, document, test plan and any
modeldesign to estimate and measure its action: A collection of reusable
element is the user interface of a system; this represents many key design
strategies.

�9 Modeling and analysis: the performance analysis, distribute system problems,
processing assignment can all be reused.

�9 Test: after using product line, all of the test plan, test process, test case, test
data and test tool need to exist.

�9 Project programming, we can use experience to forecast the future work,

320 Software Architecture

including budget and schedule. We need not build our work breakdown
structure. So we can easily establish team, team scale.

�9 Process, method and tool: the configuration control rule, application program,
document plan and authorization process, tool environment, system
generation and distribute rule, code standard and other project plan support
activities can all be reused in product. The whole software development
process is ready, and is being used all the time.

�9 Personnel: the applications developed must have common characteristics, so
we can translate personnel among projects. So the special techniques of these
personnel can be used in the entire product developing of the whole family.

�9 Sample system: treat the products as high quality demo antitypes and high
quality engineering design antitypes.

�9 Diminishing bug: using product line can improve quality, because every new
system benefits from the old system' s success of diminishing bug, and the
old system already uses the product line. The self-confidence of developing
personnel and customers is increasing. The more complicated the system is,
the higher return can be got when the project design problems are solved.

The software product line depends on reuse, but just as described in the
beginning of this chapter, in the software engineering, reuse has a long history, but is
not resplendence. The return of reuse is always not so good as we expect. Why?
The reason is that in all the time, we build the reuse based on the theory that " i f
you have built reuse base, you Can get product line". The reuse base saves the
elements of the previous project, and we expeGt the development personnel check
this reuse base before coding new elements. It is almost likely that we produce any
product according to the model. If the information in the reuse base is small,
developing personnel can get little useful information, at last he gives up; if the
information in the reuse base is large and abundance, it is hard to get the useful
information we need. If the element is too small, it is easier to develop new element
rather than using the existing one; but if the element is too large, it is hard to
understand the functions of these elements, so development personnel can hardly
reuse it in any case. In most reuse bases, the families are often mistiness. The
requirement of new application can hardly match with the quality attributes of
elements provided in the reuse base.

In any cases, these elements are possible not proper for the architecture model
used by the new system. Although an element can work well, has proper quality
attributes, is it the required architecture? Has it the proper alternant protocol? Dose
it adhere to the new application's mistake processing? It is worthy of doubting.

Software product line is useful through building a context for reuse. Define
architecture, specify function, and comprehend its quality attributes. Only these
elements which are considered for reuse when to be produced can be put into the
reuse base.

Like any other architectures, it is necessary to evaluate the software product
line. In fact, many systems use architecture; as a result, the evaluation of software

9 A Vision on Software Architecture 321

product line is important.

The evaluation skills are very good for the evaluation of software product line. It
is necessary to evaluate the architecture' s robust and general attributes, so as to
make sure it can be treated as the base of products in the software product line. To
make sure the architecture satisfy the requirement of products ' action and quality,
evaluating architecture is necessary. We first discuss the content and method of
evaluating, then discuss the evaluating time.

What and how to evaluate.

We must mainly evaluate the variation point, so as to make sure: they are proper;
they provide adequate flexibility, so that they can occupy the estimated scale of
product line; they support quick construct product; they will not generate any
performance cost that can not be accepted. If the evaluation is based on scene, we
must get the different scenes related to architecture instantiate to support different
products in the family. Besides, the different product in the product line may have
different quality attribute requirements, we must evaluate the combining ability of
architecture. At present, we also need different scenes.

In general case, at the primary time, the hardware and other factors that effect
performance are unknown. In this case, evaluation can fix on the boundary of
performance, and can postulate a boundary for hardware and other variation factors.
This evaluation can fix on the potential conflict, so that you can make strategies and
policy solve these conflicts.

When to evaluate.

We must evaluate the instance and variation of the architecture that build one or
more products in the software product line. Whether to evaluate the p r o d u c t ' s
architecture in a single, special way depends on the differences between this
architecture and product line. If there is no difference, we can simplify the
evaluation of product line architecture, because we will solve the problems generated
in the evaluation of a problem. In fact, just as product architecture is a variation of
product line architecture, product architecture is a variation of product line
architecture evaluation. Therefore, depending on the evaluation method, evaluated
products have the potential of reuse, so we must memorize it when creating these
products. In general case, the result of product architecture evaluation can provides
useful feedbacks for the product line designers, and improves the architecture.

When the new product proposed to develop is not in the scope of the ori/~nal
product line, we can evaluate the product line architecture, to f'md whether this
architecture is enough for the new product to be develop ed." If it is enough, we can
extend the scope of product line, so that the new products are included, or we can
generate a new product; if it is not enough, we can know how to modify the
architecture through evaluating, so that the product line architecture accepts the new
product to be developed.

To use product line successfully, the development organization must have ample
experience. Techniques are not the only obstacle; organization, process and
commercial problems are equally important to get the dominance in getting software

322 Software Architecture

product line methods.
For any project, architecture definition is an important activity, but just as we

have seen, we must emphasize the variation points of software product line. For
any project, configuration is also important, but for software product line,
configuration management is even more complicated, because every product is the
result of binding many variations. The configuration management is to copy the
products ' all versions that have been delivered to end-users. The product here
refers to code and sustain product, including requirement standardization, test cases,
user handbook, and installation guide. The configuration management includes: find
which version in the reuse base is used, how to reduce the product line asset, and
what special code and document are added.

Analysis of every aspect of product line is beyond the scope of this book, but
we will analyze the key aspect, so that you can know the difference between the
product line and single system development. These problems must be faced when
the organization considers whether to use product line.

Just like using any other new techniques, it is difficult to make the organization
use the product line. How to solve this problem depends on the organization's
culture and context.

When the managers decide to use the product line, it is using product line top-
down. When using this method, it is necessary to change the work style of the
personnel who are hard working. When the desigriers and development personnel
recognize that they need not do the same things each other, start to share resource
and develop the common core asset, it is using product line bottom-up. When using
this method, we must find a manager who supports using product line, and can make
other department ' s personnel use the product line too. These two methods are both
available: they both need a person who supports product line and can give plenty of
help. This person absolutely believe the great use of product line, and can share the
believable thought with other personnel.

Independent with the problems of techniques development orientation, the
problem is how the product itself to develop. As following, we will give two
models:

In a proactive product line, the organizations use a broad scope to define the
product line family. They use the experience, their comprehension of market and
technique development trends and excellent commerce sense, not crystal ball to build
the proactive product line. In this two product line development model, the
proactive model is stronger, because it can make the organization constitute the
most far-reaching strategy. Explicitly fixing on the boundary of product line, you
can find what new products are needed in the market, but they are not produced, so
that you can extend the product, quickly fill up this gap. In a word, proactive
product line scope can make the organization hold its own fortune.

In some time, the organization can not use the hint confirmation of proactive
product line model to forecast the market requirement. Maybe because this is a new
field, or the markets are in variation, or the organization does not have enough fund

9 A Vision on Software Architecture 323

to construct a core asset base that covers the whole product line scope. In this case,

the organization is more likely to use a reactive model. In this model, organization
constructs the product fami ly ' s one or more members according to the former
products. With the development of every new product, the architecture and design
blue prints are extended according to the requirements and the core asset base is
constructed with the elements which are "proved" but not "planed". The reactive
model does not emphasize the advance plan and strategy orientation. On contrast,

the organizations operate under the market 's baton.
Understanding various models is good for the organization to choose their

proper model. The proactive model requires initial investment, but spends hardly on
the poor work; the reactive model almost has no initial investment, but need to do
much poor work over again. For a special organization, how to choose model
depends on the idiographic case of the special organization.

The organizations who own the product line have a architecture and a related set
of elements. The organization often can create a new member of the product line; it

not only has the common characteristics with other products in the product line, but
also has its special characteristics.

A problem related to the product line is how to manage its evaluation. With time
going, product line--especially the core asset that is used to construct p roduc t - -
also needs evaluating. This evaluation is forced by external and internal source.

External source

The element created by external source can be added to the product line. For
instance, some functions finished by internal elements must be finished by external
source. Or the future product must use new techniques, but these techniques are
included in the external developed elements. New characteristics can be added into
the product line, so as to satisfy the user ' s requirements or adapt the competition.

Internal source

It is necessary to make sure whether the new functions added to the product are in
the scope of product line. If yes, we can simply finish the development of new
product using the product line reuse base. If not, we must make decision: we can
depend upon the improved product from the product line to evaluate, or enlarge the
asset base, so that the reuse base can include these new functions. If these new
functions are likely to be used in future products, updating the product line is the
most intelligent choice, but updating the core asset base needs time. If the product
line~s asset has changed, though the organization can withdraw the constructed
products, and can change the product according to the newest asset base, it can not
do so. Making product and product line compatible needs time and energy, but if it
does not do so, the updating of future product will take more time and energy. This
is because product must be consistent with the newest product line elements, if not
do so, we can not add new functions to the product line.

In the rest of this part, we give the organization structure. The asset base
product has its own evaluation way, it requires the organization to decide how to

manage it and how the products develop. Jan Bosch searched the product line

324 Software Architecture

organization model, and identified four types as following (Bosch, 2000):

Developing department

All the software developments are concentrated in a unit. We expect every member
in the unit is almighty, and can do field project design and application project
design. Small organizations and organizations that provide consultation usually use
this model. Although this model is quite simple, and convenient to communicate, but
only owning a unit may has many problems.

Operation unit

Every operation is in charge of a subset of the products family 's system. These
subsets are gathered according to their similarity. The shared assets are developed
by the units that need them, and provide it to the organization; the operation units
that are developing new assets can cooperate with each other. This model has
variation, and it depends on the flexibility of the operation unit when developing
new assets. If has no restriction, the products will be different on its evaluation
way, so that making the software product line can not achieve its targets.

Fields project unit

We must specify a special unit that is in charge of the core assets' development and
maintenance, thus the operation unit can construct products according to these core
assets. Bosch points out, if the number of personnel of the organization beyond 100,
the single communication channel between operation units can not accept the work
strength, and building a shared asset communication channel is necessary. In this
model, we must have a strong standard process, to manage the communication
between units, so as to make sure the good operation of product line is the main
goal of every department.

The layered fields project unit

We must treat the large or complicated product line as a layered system. That is to
say, the product line can be made up of sub-cluster. Compared with other members
in the product line, these sub-clusters have more common characteristics. In this
case, a f i e l d ' s project unit develops shared assets for the whole product line;
another field's project unit develops shared assets for the special sub-cluster. This
instance has two layers, but if the sub-clusters have their own special sub-clusters,
this model can be extends infinitely. The layered fields unit is proper for the large
organization to construct large product line. The main disadvantage is the model is
too Farge, so the response of organization to new requirement is slow.

Because more and more organization find that using product line can improve the
products ' cost, process and quality, this method become more and more popular.

But, just as other new fields, this technique is unknown in many aspects.
Considering from the architecture aspect, the key point is to fix on and manage the
common characteristics and variation point, but we must solve the non-technique
problems at the same time, including how to use this model, how to arrange the
organization's structure and how to maintain the external interfaces.

9 A Vision on Software Architecture 325

9 . 2 Software Architecture Used in Other Fields

9 . 2 . 1 The Outline of Software Architecture Application Practice

From the date that SA is put forward, the theory research and industry practice are
both attached much importance. In a word, the application and generalization of SA
are incarnated in these several aspects:

�9 The establishment of industry standards
For instance, IEEE established the international standards which are related to

software architecture (IEEE,. 2000); SAE established the standards of ADL, which is
called AADL; in the UML standards established by OMG, the 4+ 1 views def'med
by (Kruchten, 1995) are also used; the UML 2.0 standards absorbed the research
achievement of software architecture, the concept of connectors, combined
components which are brought in from SA as new notion is also absorbed; in many
industrial frameworks, the notion of connector is also explicitly brought in, such as
JSR 112 standards, the J2EE Connector Architecture is established, which is used to
connect heterogeneous systems.

�9 The development of real product
For example, the Bell Laboratory enforces the application of SA in real software

products development, and through the form of projects unite, entering into science,
the experiences of industry practice are contributed to the software architecture
researcher. For instance, the SEI in CMU owns lots of research personnel from
industry. In software enterprise, software architects are independent as a special
profession, and become a technology leader of a software project. The most typical
instance is Bill Gates, who treats himself as the chief software architect.

�9 The relative books and courses
The SA is attached with much importance, it is also incarnated in publishing of

related books and the setting of related sources. The software architecture
technology boost community was founded in CMU-SEI. This organization
published a set of books, courses, and products related to software architecture; the
Worldwide Institute of Software Architects and International Association of
Software Architects are also founded, and they enforce the education and
application of SA through book publishing and community member activities.

9 . 2 . 2 The Development Trends of Domain-Specific Software

The software architecture is the new theory arisen in recent years. The Domain-
Specific Software Architecture (DSSA) is one of its trends. Because of its
accordance with engineering requirement, it develops quickly.

For the design of any large scale software, the key aspect is to organize its main
architecture, because the architecture represents the computing elements and their
relations on a high level, and this is just the design of architecture. For a long time,

326 Software Architecture

software architecture is an important content in the software engineering, and in the
recent years, software architecture appears as a dependent field. In nowadays, this
trend has the following characteristics: much work is done in the module interfaces;
Domain Special Architecture, Architecture Description language. Design handbook,
and architecture design environment, these all belong to the software architecture
level design; the others include the whole general outline design, the global control
structure design, communication, synchronism, protocol design of data accessing.
constitution of the balance of scale and performance for the design element, and the
choice of design methods.

Although software architecture has already been a main content in software
engineering, many scholars bring forward their own viewpoint. But up to now, there
is no universal accepted definition. The earlier researcher such as Garlan defined
software architecture as "the structure of program and system component, their
relationship, and the principle and guidelines that govern their design and
evaluation". This definition describes the main aspect of architecture, but the
concrete content must be designed and implemented in research and development.

These two development trends must be attached much importance, and worth a
lot of thought. One trend is that, after many years, the development personnel start
to recognize that we must develop some shared method, techniques, normal formula,
and conventional grammar to construct some complicated systems. And in
nowadays, many research articles come out. For instance, the rectangle and line
graph accompanying with high level system description normally hint the "p ips"
and "Server/Client system". They permit the designers to use this simple and
abstract method that makes the system easy to understand to describe the
complicated systems. Again, they provide effective semantic content to tell others
the special characteristics that this system owns, for instance, the desired evaluation
ways, the whole computing normal formulas and the relationship with other similar
systems.

The other trend is: the more and more attention to the supply of reusable
framework for the products used in special fields. These developments are based on
this thought: we can distill the common aspect of related systems, so as to construct
new systems through instantiating the common design in low cost. The familiar
example is the standard decomposition of compiler. With this method, people can
construct a new language compiler in shorter time. The second example is the
standard communication protocal, which makes manufacturers be able to provide
services in different abstract level. The last example is GUI tool kits and
frameworks, such as menu or dialog box, with which we can create rich client with
much less effort.

The architecture design of large scale software always play.s an important role in
the process which determines whether the system is successful or failed. This is
because, if we choose an unsuited architecture, the result is a disaster. The
recognition and comprehension of architecture are more and more important. This
will lead to the appearance of more regular architecture design, and this architecture

9 A Vision on Software Architecture 327

design will improve our abilities to effectively construct our software system
efficiently. Especially, using software architecture in principle will bring much
benefit in the following five aspects:

�9 Comprehension
Software architecture can simplify the understanding of the system through

building abstract description on high level of systems. In addition, the software
architecture description opens out the system constraint on high level and the basic
p rincip les which det ermines the special architecture.

e. Reuse
The architectural description supports reuse in multiple levels, and the current

reuse research is mainly on component lib. The architecture design can support
reuse of large component and multiple component integration. The DSSA,
framework and normal formula for design already have these trends.

�9 Evaluation
The software architecture can reveal the orientation of system evaluation.

System maintenance personnel can better understand the offshoot of system
modification, so that we Can estimate the modification cost more accurately.

�9 Analysis
The architecture description provides new artifice for the analysis, including the

high level check of system obdurability, the consistence of architecture styles, the
consistence of quality attributes, the special fields' architecture analysis Which
conform to the special form.

�9 Management
The successful of software architecture will be the main milestone of software

industry processing, The architecture must satisfy the requirement of system
initialization and the desired development orientation. When starting to develop the
product, developers do not consider to satisfy the condition, as a result this system
will not be fit or not modifiable.

The software architecture is a framework that helps to understand the system
component and the relationship between them, especially the attributes which
always span time and implementation. This comprehension is very necessary for the
current system analysis and future system integration. On the support of analysis,
architecture holds the consistence of fields' knowledge and the real circumstance,
enforces the evaluation of design and the actualization of component, and reduces
the emulator and antitype construction. On the support of integration, the software
architecture provides the basis for building the product family, using domain
knowledge construct and maintain module, subsystem and system.

In the constraint of reducing budget and shortening development time, and under
the continual requirements of sys t em ' s complication and extendedness, the reuse
attribute becomes more and more important. In the document of "Software reuse
estimation and strategy" by Department of Defense, the DOD emphasized the
importance of using architecture as the center reuse techniques to develop and
sustain the whole software cycle. To reach this goal, DOD sponsored many

328 Software Architecture

researches which treat the architecture as the focus. These research include: STARS,
CARDS, DSSA, Prototech and software engineering foundation, the SATI in SEI,
CMU, etc. As the reusable framework, architecture' s availability can be seen from
the similarity between civil engineering and chemical engineering. Secondly, the
effort from distinct and applied architecture techniques, can be considered as one
part of entering the mature software engineering law.

The software architecture techniques are implemented in the STARS and DSSA
plan. The double life cycle model as shown in Fig.9.1 and the three level system
model of DSSA as shown in Fig.9.2 can be treated as the different views on the
same processing which is architecture-centered.

Domain engineering

Domain ~ Domain~..~ Domain
analysis m o d e l ~ Architecture ~

development

r Domain ~ Reusable --~Reusable]
Software ~ Component "-I,:omponentJ

architecture . generator . ~.
A

Application C

T

at ool ,
~is I [Application/I
on ~D,~ Performance ~,- I
i n [~specificationJ [

Application B

Application A 1

I .------ [Appli,
I () I Analr

- - I I aser t ~ l Basec
[k] [Dom~

Application] . . [
Based on [~JApplicationk~J
Requirementr']architecture I r I
architecture I k

Application I
Development[(
Based on [.~ Applicatio~
Reusable] - l software J
component I

Fig. 9.1 STARS' double life cycle

Essentially, DSSA is a collection of software component. It is written in
standard structure and protocol, and it is for special task, then is generalized, used
for the whole similar problems.

DSSA provides a omnibus software design method for a kind problems in a large
range. It concentrates the designer's interests on the special requirement of current
problems, and the common problems judged by DSSA are omitted. If the designer
wants to use DSSA method, software engineer must provides descriptions of special
requirement to the special problems, then the solution to a special problems can be
generated from the whole design according to the DSSA. The system checks the
consistence of the problems description, and the generated software guarantees the
solution of this problem.

In the process of designing universal components for large, middle commercial
systems, we can use DSSA method. To build domain model, we must know
customers' requirement, decompose scene, and make the problem domain dictionary,
so as to make the E-R graph, the dataflow graph and state transition graph. Then,
we can bring forward the object model, generate domain model according to object
model. This is a general method. The Unified Model Language is recommended. The

9 A Vision on Software Architecture 329

Domain _ _ ~
architecture Domain development environment

I I I [I
Reference Reference Domain

architecture requirement component model

Application ~ Domain specific application
engineer v [development environment

Developing
tools

Instantiate architecture

Operator -] [--] Application running environment

Fig. 9.2 DSSA' s three-level system model

UML is a language that mainly refers to the OMT and Booch method, inosculates
other object-oriented analysis design method. UML is convenient to describe and
assist the analysis and design Work of software system. Using DSSA also has the
following requirement: in the complicated constructing process, we must use the
increment method smartly. In the linear documents, we must provide domain
architecture descriptions that have different complication, so that users can modify
the connotative domain knowledge, and add them to their own description.

Most of the complicated problems can not be solved directly, hence we
decompose them into several simpler problems, and these simpler problems can be
decomposed into basic ingredient. For example, developing a new compiler for the
new language on new machine can be treated as an instance of complier construction
problem. We know, a compiler construction problem can be decomposed into
scanning, parsing, name analysis, and code generating by special method. Problems
which can be decomposed using this method are called "composite problems". After
analysis, composite problems can be decomposed into "ingredient problems".

The comprehension of composite problems and their solutions includethree
aspects: how to decompose a composite problem into ingredient problems; how to
solve each ingredient problem; how to composite these independent solutions for
the ingredient problems into a solution for the composite problems. The method
that can be used to solve DSSA problems can only be used to solve the problems
whose domain are recognized clearly, whose basic requirement can be modeled. Only
to these problems, the advantages of DSSA can be incarnated. We take the compiler
software as example. After several decades' research, it is considered that DSSA is
the proper solution. For example, Colorado University used the DSSA methods
constructed the compiler Eli, and this compiler can be used in a variety of
environment, including FORTRAN, C, PSDL, etc. The especially important
characteristic is that it can construct a new compiler for a new language quickly. The
success of Eli directs the orientation of DSSA developing, using this thought and

330 Software Architecture

method; we can provide good help for the software development 's velocity and
quality.

In the process of practice, the solutions of real problems have many similarities,
and the commercial systems are a good example. The operations of commercial
systems have many similarities, and are easy to distill domain model. How to
combine the real conditions, use these advanced thoughts and method such as
software architecture and DSSA, help development personnel to produce plenty of
software quickly, is becoming the main research target in the future.

9 . 3 Software Architecture's Future Research

Because of the hard work of researchers and practicers, in nowadays, the research of
SA has already filtered into all the phases of software lifecycle, and has got
plentiful research results. Being similar with other fields (such as structured method,
object-oriented method) in software engineering research, the research of software
architecture first puts attention to one phase of software architecture (design), then
transits to the phases after design (implementation, deployment, post-development),
at last we again put attention to the phase before design (requirement), so that a set
of methods that overlay every phases are formed.

With the enlargement of software sy s t em ' s scale, the application of software
architecture in real software development is more and more important, so we must
research and practice more about SA in every phases of software lifecycle. On the
other hand, the development of Intemet technologies enforces the appearance of
new software conformation--network-based software. To adapt the open, dynamic
and variable running environment, the network-based software appears the
characteristics of flexible, multiple goals and continual reaction. This will lead to the
continual adjustment and adaptation of network-based software' s architecture and
its composed components, so it brings the requirement of researching new SA in the
new environment. We think it is necessary to research these four aspects about SA:

�9 The further research about traditional S A ' s research areas and the further
research about unsolved problems. For instance, the automation and semi-
automation from requirement to SA, the uniform software architecture structure
description method based on met a- model, the style of mixed architecture, the more
applied architecture' s evaluation and analysis methods, the transmission method
from design to application system combined with component pack and model
transmission, the pack and deployment of automation component based on
architecture, the representation of run-time architecture and system platform
support, the rebuild and reuse for legacy system, the traceable support of soft,rare
architecture in the whole software lifecycle, the architecture design, analysis and
evaluation tool support, etc.

�9 The role of SA in software lifecycle. Compared with traditional software, the
networking software is more complicated, variable and open; these enhance the

9 A Vision on Software Architecture 331

comprehension, analysis and development's difficulty for network-based software.
How to define the role of SA in the network-based software' s lifecycle? This will
be a problem that worth researching and attending, The main researching areas
include: the description and analysis methods for networking, the quality attributes
and guarantee mechanism of network-based software based on architecture.

�9 The software developing methodology based on architecture. The
development of software involves many aspects, through displaying the core
functionality of SA in the software lifecycle; we can efficiently organize software' s
development, deployment, maintenance and evaluation.

�9 The software architecture' s support to real software development. How to
apply the scientific research results to real software development is always the
problem that puzzles the researchers. In nowadays, though the practice of
architecture has got elementary result, but in the real practice, we still mainly
depend on the experience of software architect. There is no successful method and
case that systematically use architecture to guide the software development. We still
have to do much on the method to apply architecture to real software development.
For 'instance, to integrate the relative concepts and workflow of software to
software development environment, to research the methods of merging and
integrating software architecture with the existed software development; to hold the
education and training relative to architecture, etc.

9.4 Summary

This is the last chapter of this book. In this chapter, we first describe software
architecture's position in modem software industry. We categorize software into
package, embedded software and software services, and describe each type of
software's characteristics and its developing trends, we list much data to show the
software market scale and increasing rate, so as to describe the whole visage of
software.

After describing the classification of software, we introduce the concept of
software product line. Software product line is used to improve software 's
production rate and quality. Its main principle is to create and maintain a "core
asset base". We save the reusable components in this base, so if we need some
components that have the same or similar function with component in the core asset
base, we need not build new component from nothing, The only thing we need to do
is to pick up the component in the base. But the technologies of software product
line is not mature. It is still in developing and attracts many researchers.

It is well know that Domain-Specific Software Architecture (DSSA) is one of
software architecture' s developing trends. So we take much attention to the
software architecture used in other fields. We first summarize software architecture
application practice, and then introduce the development trends of Domain-Specific
software.

332 Software Architecture

In the third part, we talk about software architecture' s future research. We think
these four aspects are worth researching and have much to do: The further research
about traditional SA's research areas and the further research about unsolved
problems; the role of SA in software lifecycle; the software developing methodology
based on architecture; the software architecture's support to real software
development.

We hope this chapter can give a guideline and direction for architecture's
researchers and users.

References

(Bosch, 2000) Bosch, J. Design and Use of Software Architecture: Adopting and
Evolving a Product Line Approach: Addison-Wesley.2000.

(Clements, 2001) Clements, P., Northrop, L. & Northrop, L. M. Software Product
Lines: Practices and Patterns: Addison-Wesley Professional.2001.

(IEEE, 2000) IEEE. IEEE Recommended Practice for Architectural Description of
Software-Intensive Sy stems.2000.

(Kruchten, 1995) Kruchten, P. B. The 4+1 View Model of Architecture. Software,
IEEE 1995(12): 42-50.

Index

ABAS, 238
absolute adaptive range, 302
Abstract, 1
abstract grammar tree, 78
ACME, 125, 127

representations, 126
activate model, 37
Actor model, 122
ADL elements

closure, 124
components, 124
operators, 124
patterns, 124
specification, 124

agent router, 181
ALPSM, 260
application software, 313
ArchEdit, 202
architectural behaviors

description, 133
architectural description languages, 122
architectural design, 170
architectural element, 237
architectural styles

comp arisonm, 83
heterogeneous style, 85

architecture candidates, 248
architecture pattern, 35
architecture reflection, 284
ArchStudio, 204

archedit, 210
Archip elago, 210
ArchLight, 211
archlight issues, 208
archlight notices, 209
editors, 210
install, 204
launcher, 208
main view, 207
Myx, 204
navigator view, 207
outline view, 207
Schematron, 205
selector, 212
type wrangler, 213

ArchWare ADL, 281
ARID, 265
artifact, 5, 226
artificial intelligence, 111
aspect-oriented programming, 5
asynchronous communication, 36
ATAM, 257
attribute-based architectural styles,

238, 258
authorized pattern, 37
base-system, 285
Bauhaus Linda, 294
B-Method, 122
boolean expression evaluation, 77
bundle management sy stern, 136

334 Software Architecture

C2, 128
C2 style, 214
categories, 172
CBAM, 267
CCS, 134
Client/Platform/Provider architecture, 100

Client, 101
Platform, 101
Provider, 101

CM, 291
communicating sequential processes

w / , 147
alphabet, 147
alternative, 146
choice, 148
composition, 153
divergence, 157
guarded expression, 148
input, 147
internal choice, 150
multiple alternatives, 149
non-deterministic, 149
output, 147
prefix, 148
refusal, 157
trace, 157

communicating sequential processes,
146

communication system
digital communication system, 39
simulative conmmnication system,
40

comparison framework, 247
component, 10
component based analysis, 44

collaboration, 44
ref'mement, 44
type, 44

connector, 10
constraint, 10
control prineip le, 36

design layer, 36
technique layer, 36

coordination model, 291
core level, 62
CSP, 122, 134
cybernetics, 82
Darwin, 128
data process division, 67
data sharing style, 70

blackboard, 71
central data unit component, 71

data transfer control, 67
deadlock, 158
Design, 170
design rules, 171
design space, 171

architecture, 171
function, 171
system, 171

digital communication system, 39
direct scenarios, 231
domain-specific software architecture,

325
. DSSA, 325
Duwamish

business facade, 69
business rule, 69
Data Access layer, 69
web layer, 69

Dynamic model, 118
dynamic software architecture, 278
dynamic WRIGHT, 278
e-government, 89
ESAAMI, 252
evaluation

importance, 224
evaluation methods

ATAM, 234
SAAM, 228

event-driven style, 51
advantages, 53
characters, 51
disadvantages, 54
independent components, 55

event-driven system

Index 335

design principles, 52
event listener, 56
event resource, 56
evolution, 45
expert system, 72

knowledge, 72
experience, 72

FEAL
FEAL compatible, 160
Mapper, 164

FEC
Comment, 162

�9 Container, 161
Entity, 161
Instance, 162
Link, 162
Property, 162
PropertyType, 162
Scrip t, 162
Type, 162
ViewM odel, 161

feedback loop style, 81
FIML, 182
first-order calculus, 279
flexible object, 299
flexible software architecture, 274
formal architecture description, 120

advantages, 120
Foundation of Extensible Architecture

Language, 161
FEAL Element Categories, 161

FSA, 275
Functional model, 118
global market of software, 313
glue, 140
hierarchical layer, 62

roles, 62
higher-order n-calculus, 279
IDE, 191

features, 191
IDE design, 199
IEEE 1471-2000, 12
indirect .scenarios, 231

individual evaluation, 232
industry standard, 325
interface tuple space, 295
interpreter, 72
ISO/OSI, 65

application lay er, 67
link layer, 66
network layer, 66
p hy sical lay er, 66
presentation layer, 67
session layer, 66
transport layer, 66

ITS, 295
Java event model, 56
JavaBean archit ecture, 55
KDL, 130
Knop flerfish, 136
LAURA, 294
Law-Governed Linda, 294
life cycle model, 176
LightT S, 295
LIME, 295
Linda, 292

tup le, 292
Linda in a Mobile Environment, 295
MADAM, 305
man-machine interface, 73
mapping, 198
M ARM OL, 284
MEECP

agent management system, 185
directory function, 185

"MEECS, 180
meta architectural model, 286
meta-system, 285
MMAS, 90
mobile agent, 105

framework, 110
mobile collaboration

members collaboration, 105
organization collaboration, 105
supporting collaboration, 105

Mobile CSCW, 89

336 Software Architecture

mobile e-commerce, 90
Mobile Embedded

System, 180
mobile environment

concerns, 180
model, 8
�9 modeling configurations

comp ositionality, 132
dynamism, 132
heterogeneity, 132

non-formal architecture description
deficiencies, 118

Object model, 118
object-oriented, 3
object-oriented analysis and design, 43
object-oriented development, 118
object-oriented programming. 43
object-oriented style, 42
ontology structure, 105
open distributed system, 44

component, 45
configuration, 46
connector, 46

Opus, 294
OSGi, 135
PASA, 263
Petri Nets, 122
Pilar, 288
pipes-filters style, 38

advantages, 38
bounded pipes, 38
sequence batch process, 38

process algebra, 278
pseudo code, 43
publishing-subscription style, 51
QAUT, 243
quality, 222
quality attribute, 37
quality attribute utility tree, 240
quality attributes

availability, 222
modifiability, 222
performance, 223

E-Commerce
security, 223
testability, 223
usability, 223

quality model, 222
quality requirements, 222
Rainbow, 303
rationale, 11
reflection, 285
regular expression, 77
reification, 285
relative adap rive range, 301
Reo, 294
repository style, 70
response, 226
response measure, 226
Revision Control System, 201
Rich Client Platform, 196
SAAM, 250
SAAM CS, 251
SAAM ER, 255
SADP BA, 172

action, 173
architecture, 177
feature matrix, 179
process, 173

SAEM, 262
SBAR, 259
scenario, 226
scenario development, 231
scenario interaction, 233
scenario prioritization, 241
scenario-based evaluation, 246
schema, 198
SMCSP, 89, 90

agent management system, 93
communication server, 94
data maintenance, 96
directory facilitator, 94
function design, 93
graph agent, 94
inferring agent, 94
knowledge ~ t a/~t, 94
knowledge-based design, 111

Index 337

operation support, 96
platform management, 95
plat form monitoring agent, 94
server resource marmgement tasks,
98
service information agent, 94
service message agent, 94
user agent, 94
user information agent, 94
user mes sage agent, 94

software architecture, 8
software architecture description, 12
software architecture integrated

develop ment environment, 191
software architecture style, 31
software architecture view, 15

allocation view, 19
behavior view, 21
component & connector view, 16
decomposition view, 18
deployment view, 20
implementation view, 19
use case view, 25

software engineering, 6
software life cycle, 29
software measuring, 226
software quality, 224
software questioning, 226
software reuse, 170
Sonia, 294
source of stimulus, 226
stakeholder, 11
stimulus, 226
synchronous communication, 36
trade-off point, 237
tup le sp ace, 294
Type Wrangler, 213
UML, 43

unified suite of tests, 211
unique identifier, 212
validation, 157
validator, 198
VDM., 122
virtual machine style, 76
WRIGHT, 117, 127

attachement, 141
component, 137
configuration, 141
connector, 139
constraint, 145
instance, 141
interface type, 144
p aramet eriaz at ion, 145
style, 143

xADL, 129, 203
XArch, 195

Foundation Lay er, 199
model layer, 197
outline view, 196
prop erty view, 196
user interface layer, 196

Z, 122
rt-ADL, 129, 278

base layer, 282
first-order layer, 282
higher-order layer, 283

rt-calculus, 134, 279
inaction, 280
parallel composition
280
prefix, 280
process, 280
replication operator, 280
restriction operator, 280
summation operator, 280

operator,

	11-20.pdf
	21-30.pdf
	31-40.pdf
	41-50.pdf
	51-60.pdf
	61-70.pdf
	71-80.pdf
	81-90.pdf
	91-100.pdf
	101-200.pdf
	101-110.pdf
	111-120.pdf
	121-130.pdf
	131-140.pdf
	141-150.pdf
	151-160.pdf
	161-170.pdf
	171-180.pdf
	181-190.pdf
	191-200.pdf

	201-last.pdf
	201-210.pdf
	211-220.pdf
	221-230.pdf
	231-240.pdf
	241-250.pdf
	251-260.pdf
	261-270.pdf
	271-280.pdf
	281-290.pdf
	291-300.pdf
	301-310.pdf
	310-320.pdf
	321-330.pdf
	331-340.pdf
	341-350.pdf
	351-last.pdf

